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Chapter 1

Introduction

Diffeomorphisms in non-relativistic systems has gained a renewed importance due to
major applications in the field of condensed matter physics, such as in the descriptions of
the fractional quantum Hall effect (FQHE), trapped electron gas, and various transport
phenomena, to name a few [1-8]. This was initiated in [1], where the role of non-
relativistic diffeomorphism invariance (NRDI) to analyze the motion of two dimensional
trapped electrons in the context of the FQHE was discussed. This work was inspired by
the fact that at low temperatures a Fermi gas behaves as a superfluid. Experimental
studies suggest that for the two component Fermi gas an interesting regime exists
between Bardeen-Cooper-Schrieffer (BCS) and Bose-Einstein condensate (BEC) known
as the “unitary Fermi gas”. The relevant effective field theories used to describe this
regime involve some variant of the Schrédinger theory on a (2+1)d manifold with
universal time. Interestingly, within this effective field theory description [1]- [6] the
fields were found minimally coupled to the Newton-Cartan (NC) geometry [3], [5] which
provide a covariant description of Newtonian gravity.

The main motivation of this thesis is to investigate diffeomorphism invariance of
non-relativistic matter fields. Covariance in non-relativistic physics is subtle due to the
absolute nature of time i.e. does not depend on space. NRDI thus has certain distinct
features that sets it apart from usual (i.e. relativistic) diffeomorphism invariance. We
proposed a field theoretic method to attain NRDI in our work [9,/10], wherein the lo-
calization of the Galilean symmetry for field theories in flat spacetime was carried out.
The geometrical interpretation of the resulting theory provides a dynamical construc-
tion of the NC spacetime as the most general Galilean invariant curved background [11].
We will address this formalism as the “Galilean Gauge theory” (GGT) inspired by the
“Poincaré gauge theory” (PGT) [12]. Our method also incorporates torsion in the con-
nection in a straightforward manner. In the process we formulate a massive field theory
minimally coupled to the NC background. Local Galilean invariance would be manifest
for these fields on this background, similar to the role of Lorentz invariance in the rel-
ativistic case. It may appear that a suitable construction of diffeomorphism invariant
non-relativistic theories can be obtained from relativistic theories through contraction
(light-cone reduction, Wigner-Inonu transformation). While the resulting connection
of the manifold would be decomposed into an inertial part and a non-inertial part, in



the absence of special boundary conditions this decomposition will not be unique [13].
In addition, the dynamics of fields coupled to the background, particularly to the gauge
field contained in the non-inertial part of the connection, are not trivial consequences
of known non-relativistic contractions.

In relativistic theories, PGT provides a derivation of matter fields minimally cou-
pled to curved backgrounds through the localization of spacetime symmetries of the
fields in flat spacetime [14-16]. The localization procedure for a matter theory invari-
ant under global Poincaré transformations involves promoting the parameters of the
transformation to local functions of space and time. The invariance of the theory is
broken upon localization. To restore the invariance, compensating fields are introduced
in the process by defining covariant derivatives [12]. A very important aspect of this ap-
proach is the correspondence of these new fields with the vierbeins and spin-connection
of the Riemann-Cartan spacetime. The resulting theory identifies local Poincaré trans-
formations as diffeomorphisms in Riemann-Cartan spacetime. The key difference of
this localization method when applied to Galilean invariant field theories will be the
nature of the vierbeins. These will differ with the relativistic case not only due to the
absolute nature of time, but also on account of the degenerate metrics which they pro-
vide a map for. For the Riemann-Cartan spacetime, the vierbein formulation is related
directly with the metric formulation because the spacetime manifold is endowed with
a nondegenerate metric. In the case of Galilean space and universal time there is no
such structure.

In this context it is useful to recall that, following the footsteps of Einstein gravity, a
covariant geometrical formulation of Newtonian gravity was worked out by Elie Cartan
[17] and subsequently developed in other works [13|/18-23]. This construction is well
known as the NC geometry in the literature and helps in appreciating Newtonian gravity
as a non-relativistic limit of General Relativity. In Cartan’s viewpoint, universal time
was regarded as a scalar function. The trajectories of neutral test particles can be
viewed as geodesics in curved spacetime. The curved background has to be invariant
under Galilean transformations. Each space slice at constant time is flat and endowed
with a three dimensional metric with an orthonormal coordinate basis. This implies
that the parallel transport of a vector around a closed curve entirely in space will return
it to its initial position. However, if we consider the transport forward in time followed
by a spatial one and then trace it back by a temporal and a following spatial transport,
it can be observed that the vector will not return to its original position. Thus geodesics
along a spatial slice that are initially parallel remain always parallel but initially parallel
geodesics of spacetime will get pushed away by spacetime curvature [24].

We will now briefly discuss other approaches used in the derivation of minimal
coupling to, and the geometry of, curved non-relativistic backgrounds. This will serve
to place our work in a clear context with respect to these approaches. The minimal
gravitational coupling of the Newtonian theory had been initially considered in [25}26],
whose results have been reviewed in [8]. In [27] it was demonstrated that the 4-d NC
geometry can also be formulated on a 5-d spacetime through Bargmann lifting. Using
this method one can avoid the degenerate metric structure of the NC geometry and can



formulate a corresponding action principle. It gained renewed attention in [1] where the
minimal coupling of non-relativistic particles (electrons) to the external gauge field and
the metric were determined by using principles of effective field theory. The invariance
of the derived action under time dependent diffeomorphisms had been restored by
demanding non-canonical transformations of the spatial external gauge fields, which
leads to problems when considering the flat space limit [9,28]. In this limit, the flat
space Galilean transformations are restored through a specific assumption, involving a
particular relation between the gauge parameter and the boost parameter. In contrast,
the flat limit can easily be obtained in our field theoretic approach [9].

Other approaches have been put forward to determine the nature of curved non-
relativistic backgrounds directly from the consideration of non-relativistic symmetries.
One of these involves the derivation of the background geometry with appropriate
metric and curvature tensors, by gauging the centrally extended Galilean algebra
(Bargmann algebra) [29]. The conformal extension of this procedure has been car-
ried out in |30]. However, it should be stressed that this is a strictly algebraic approach
without reference to any dynamical content of the underlying theory. In addition, the
approach necessarily requires the imposition of curvature constraints in order to derive
the connection, which formally results in a torsionless theory. Torsion is eventually
accounted for in [30] by defining it as the antisymmetric piece of a metric compatible
and boost invariant connection, with the further definition of the dilatation gauge field
in terms of temporal one-form and its generalized inverse. Yet another approach, which
is very closely related to the gauging approach mentioned above is the coset construc-
tion [7,31,32]. Given a particular symmetry group, and through a prudent choice of a
subgroup within it, a coset can be defined which determines the background geometry
invariant under the symmetry group. The main feature of this approach is that differ-
ent choices of the subgroup can lead to several possible realizations of non-relativistic
curved backgrounds [31]. The general spacetime connection follows directly from the
construction of the Maurer-Cartan form within the coset formalism.

Central to the success of these approaches, as well as our own, are the presence
of vierbeins. The coset construction for any non-local symmetry group necessarily in-
volves the use of vierbeins. The same holds true for gauging the algebra directly as
in [30], and the localization of symmetries in our work [9,11]. In these works, either
implicitly or explicitly, the flat space theory corresponds to the tangent frame on which
the given theory is invariant under global spacetime transformations. The vierbeins
serve to map the theory to the appropriate curved spacetime, which in turn renders the
theory invariant under local spacetime transformations. Through their involvement,
the end result is guaranteed to be manifestly covariant and independent of any specific
choice of coordinates. In the context of the coset construction, this statement corre-
sponds to a gauge fixing choice of the parameters [31]. Vierbeins are also central to
the description in non-relativistic theories. In relativistic theories diffeomorphism in-
variance implies the invariance of any theory under general coordinate transformations.
In non-relativistic physics it involves a mixing of actual diffeomorphisms with tangent
space transformations that act on the vierbeins of the geometry.



In contrast to the approaches described in previous paragraphs, localizing the space-
time symmetries has two specific advantages. The first is that it can study NRDI and
determine the minimal coupling of any non-relativistic field theory (scalar, vector, etc.)
to the corresponding curved background by its direct involvement from the onset. The
second feature is that it reveals that the vierbeins and the relations between them, as
well as the form of the connection, are as much a result of the generators being consid-
ered as they are of the dependence on the coordinates used at the time of localization.
In particular, bearing the non-relativistic nature of absolute time, the parameters of
temporal transformations depend only on time and not space. This in turn affects which
vierbeins do result from the procedure and serves to elucidate the relation between the
vierbeins and the localization of the parameters one begins with.

In general, non-relativistic many particle systems are described by tensor products
of the Hilbert space and a many particle Hamiltonian on the product space. An alterna-
tive formalism is second quantization. This can be reinterpreted as non-relativistic field
theory (NRFT) which can be regarded as low energy effective theories of relativistic
systems. When the momentum is much less than the rest mass, NRFT is expected to be
a good description of the physics. However, for momentum greater than rest mass, ul-
traviolet divergences arise in the NRFT. These field theories have to be invariant under
the Galilean transformations and unlike the relativistic case, particle number is always
conserved here. Galilean transformations involve a time translation, spatial translation,
spatial rotation and a boost. The Galilean algebra can be further extended to include
a mass operator as a Casimir invariant. This whole algebra is known as the Bargmann
algebra (centrally extended Galilean algebra) [33]. Other symmetries, such as gauge
invariance and conformal invariance can also be included. Non-relativistic conformal
field theories can be ‘massive’ as mass is a passive parameter in such theories.

Scale transformations in non-relativistic systems are in general anisotropic due to
the unequal footing of space and time [34]. One well known non-relativistic scale
transformation is ‘Lifshitz scaling’. In this case time gets rescaled ‘z’ times as compared
to the space coordinates, where ‘z’ is called the dynamical exponent. This scaling
plays an important role in strongly coupled systems. Holographic investigations have
demonstrated that they are relevant in the description of strange metals [35]. It is also
relevant in the description of the FQHE [36], the Aharanov-Bohm effect [37], as well as
the temperature dependence of transport coefficients in the hydrodynamic description
of condensed matter systems with ordinary critical points [38]. Motivated by these
observations we will also investigate scale invariant non-relativistic field theories on
curved backgrounds. The Bargmann algebra with z = 2 Lifshitz scaling and special
conformal transformations is known as the Schrédinger algebra. This algebra can be
viewed as a non-relativistic extension of the relativistic conformal algebra.

Many continuum non-relativistic field theories admit a fluid description and are
expected to be realised in low energy physics experiments. Thus the covariant descrip-
tion of such fluids will be relevant in several condensed matter applications. The recent
literature on the NC background in large part addresses some of these topics. A fluid
is characterized by its conservation and continuity equations. In considering the NC
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background, one finds that stress and energy are separately conserved, as is expected
from a non-relativistic field theory. The additional non-inertial part of the connection
provides corrections to the usual stress tensor of flat space [25], [39]. In considering
the scale invariant extension of the NC background, further corrections result due to
the gauge field related to non-relativistic dilations [40]. However, the laws of ther-
modynamics are not affected, and one of the main applications in our treatment of
fluids is to demonstrate that the second law continues to hold. Exploring the modifica-
tion of transport properties requires the consideration of specific systems, for which we
have considered the effective field theory of the Quantum Hall fluid. This is described
through the Landau-Ginzburg model, which involves the Schrodinger field minimally
coupled to a background electromagnetic field as well as a statistical gauge field [41-43].
Coupling with the spin connection of the curved background follows from considering
the Schrodinger field as a composite boson, which was first demonstrated by Wen and
Zee [44]. This coupling does modify the usual transport relation of the stress-energy
tensor in the fractional Quantum Hall effect. In considering the scale invariant NC
background, we have demonstrated that there is in addition to the usual Hall viscosity
an additional term which can be interpreted as an expansion. This follows from the
lowest order correction to the effective field theory due to the scale invariant NC back-
ground. Clearly a more detailed investigation into the quantization of the composite
boson model and its loop effects promise to be even more interesting.

The NC background can have additional consequences related to the quantization
of non-relativistic field theories. Classical dynamics deals with tree level processes of
a quantum field theory. One of the simplest quantum corrections which occur at one
loop involves the presence of anomalies. Anomalies arise due to the consideration of
quantum fields in the presence of external gravitational or gauge fields and represent
the failure of classically conserved currents to hold at the quantum level. We have
derived the trace and diffeomorphism anomalies of the Schrédinger field minimally
coupled to the NC background using Fujikawa’s path integral approach [45]. This
approach enables us to determine the anomaly corresponding to a classical symmetry
transformation by evaluating the regulated trace of the Jacobian for the quantized fields.
This trace is evaluated for the Schrédinger fields on the torsion-free NC background
using a non-relativistic plane wave basis. We find that in 2 4+ 1 dimensions the trace
anomaly contains terms which have a form similar to that of the 1 + 1 and 3 + 1
dimensional relativistic anomalies. This result demonstrates that the NC background
which satisfies the Frobenius condition possesses a Type A trace anomaly, in contrast
with the result of Lishitz spacetimes. Through the derivation, we also determine the
coefficients and demonstrate that gravitational anomalies for this theory always arise
in odd dimensions [46]. This is in contrast with relativistic theories which always arise
in an even number of dimensions [47]. We further demonstrate that the coefficient
of the term similar to the 1 4+ 1 dimensional relativistic anomaly satisfies a c-theorem
condition. This allows us to further investigate the RG flow of certain systems on
the NC background, part of which was initiated in [99]. Such investigations will be
relevant in understanding the response of condensed matter systems to spatial stresses
and deformations.
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1.1 Outline of the thesis

I will now briefly describe the outline of my thesis

e Chapter 2 considers a detailed discussion on the different approaches to Poincaré
gauge theory, beginning with the Lie algebraic approach. The connection between
Lie algebraic and field theoretic approaches has been highlighted to better under-
stand the Galilean Gauge theory (GGT) formulated in the following chapter. The
field theoretic approach has been demonstrated through the example of the com-
plex Klein-Gordon field. In the last subsection, the geometrical interpretation of
the local Poincaré invariant action is discussed. This will help in appreciating the
construction of the NC geometry from the localization of Galilean transformations
in chapter 5.

e Chapter 3 begins with a brief description of Schrodinger fields and the Bargmann
group. Following this, we present our proposed formalism for localizing the
Galilean symmetry of non-relativistic scalar fields. This localization procedure
results in a local Galilean invariant scalar action. New gauge fields which were
introduced during localization will be identified with the geometrical objects in
chapter 5. As an example we consider the complex Schrodinger scalar field in
3+ 1 dimensions. As an application of the localization procedure we also achieve
a spatial diffeomorphism invariant action from the local one by introducing a
spatial metric.

e Chapter 4 demonstrates that our formalism can be easily generalized to couple
vector fields to non-relativistic curved backgrounds. We begin by considering a
complex scalar field interacting with an external gauge field in flat space. By
localising the corresponding spacetime symmetries we formulate this theory in
curved space. For time dependent diffeomorphisms our theory predicts the ap-
pearance of a new auxiliary field which has no kinetic term in the action. It can
be considered as an external field acting on the electron which originates due to
the curved background. As an example of a dynamical gauge field we consider
the Chern-Simons theory. In contrast to the literature where it has been reported
that the Chern-Simons term obstructs the formulation of NRDI, we have success-
fully derived the Chern-Simons action on non-relativistic curved backgrounds. In
addition we have demonstrated that the original gauge symmetry of the model is
unaffected by the localization procedure.

e Chapter 5 begins with a review of the basic properties of the NC geometry which
have been derived over the years. A comparison of the results with the ADM
decomposition of general relativity is briefly discussed. An analysis of the Lie
derivatives acting on the metrics and the NC gauge field has also been provided.
Much of these properties will be essential in understanding the dynamics of fields
considered on this background, covered in subsequent chapters. In the following
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section a dynamical construction of the NC background has been provided using
the results of GGT from the earlier chapters. The fields introduced during the
localization procedure are used to derive the structures of the NC geometry.

e Chapter 6 includes the anisotropic scale transformation in the localization pro-
cedure. Here we demonstrate that the resulting scale covariant NC background
involves an additional gauge field related to these dilatations. We further exhibit
how this background admits a Weyl tensor analogous to that of relativistic back-
grounds. The construction of this section will be necessary in understanding the
dynamics of fields on the scale covariant NC background, which is discussed in
the next chapter.

e Chapter 7 reviews basic properties and applications of fluids on non-relativistic
curved backgrounds. First, we review the covariant description of fluids on the
usual NC background - the expressions for its shear, acceleration, expansion and
vorticity, as well as the stress tensor and currents. These relations and expres-
sions are then considered on the scale covariant NC background through the
construction of a Weyl covariant formalism. As an application I consider the
Landau-Ginzburg effective model for the FQHE. I demonstrate that there exists
a response function related to the expansion of the Hall droplet which results due
to perturbations of the spatial metric.

e Chapter 8 considers the trace and diffeomorphism gravitational anomalies result-
ing from the Schrédinger field on the NC background. It is shown using Fujikawa’s
approach that the trace anomaly of the Schrodinger field in 2 4+ 1 dimensions in-
volves a result with two parts - one which takes the form of the 3+ 1 dimensional
relativistic trace anomaly and another which is of the form of the 1+1 dimensional
anomaly. It is the latter piece which is shown to satisfy a c-theorem condition
through the local RG formalism and the Wess-Zumino consistency condition. The
result for the diffeomorphism anomaly further demonstrates that the trace and
diffeomorphism anomalies for the Schrodinger field in 2 + 1 dimensions share
analogous relations with those of the scalar field in 1 4+ 1 dimensional relativistic
backgrounds.

e Chapter 9 contains the conclusions and future directions.



Chapter 2

Localization of Poincaré
symmetry

Poincaré gauge theory (PGT) is an alternative approach to Gravitation theory
pioneered by Utiyama [14], Kibble [15] and Sciama [16]. The idea was to local-
ize the corresponding spacetime symmetry- Poincaré symmetry of a field theory
in Minkowski spacetime. The importance of this procedure is that gauging the
Poincaré symmetry in Minkowski spacetime results in a diffeomorphism (diff)
invariant theory in the Riemann-Cartan spacetime. The global Poincaré trans-
formation in global Cartesian coordinates in Minkowski space is,

at =t + e+t =t + & (2.1)

where € is the translation parameter and w*, is the rotation parameter. These
parameters are constants as the corresponding transformations are global. In the
Utiyama procedure, the following step is to consider the local version of Poincaré
transformations where the parameters will now depend on spacetime. However,
following localization the rotation part is no longer independent since we can
write the local transformations as,

at =t + e (x), H(x) = e (x) + W (x)a” (2.2)

This feature in Utiyama’s approach was later revisited and successfully inter-
preted. To begin with Utiyama’s approach one has to start with a field theory in
Minkowski space,

L= L(¢,0u0) (2.3)

In the following step one has to implement an active Poincaré transformation
on the fields due to the shortcoming of local passive Poincaré transformations
described in the previous paragraph. This implies that we replace the
original fields by other fields which have been rotated and translated with respect
to their former ones. In addition, one has to introduce a coordinate independent

13
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coframe. In Minkowski space the tetrad bases (e,) and the Cartesian coordinate
bases are related to each other via
ea = OLes, ¥ =% (2.4)

The fields transform under the active Poincaré transformation in the following
manner,

3(x) = dlz) = [1+ @B Mg — eaaa] () (2.5)

where @# = w*? and & = * + wgo‘éf x'. Therefore the translation part (€%)

in [Eq. (2.5)| consists of the original translation part of [Eq. (2.1) and a rotation

induced translation. In this set up, during localization, the rotation part retains
its independent character and the matter fields are described with respect to the
tetrad frame.

Upon localization the invariance of the action is lost. To restore
invariance, gauge potentials corresponding to the translation and rotation have
to be introduced. Translational gauge potentials are identified with the tetrads.
Rotational gauge fields are included through the definition of covariant derivatives
and can be interpreted as the connection of the background. Inhomogeneous
transformations of these gauge potentials will ensure the local Poincaré invariance
of the theory. The field strengths corresponding to the translation and rotation
can be identified geometrically with the torsion and Riemann-Cartan curvature
respectively.

The drawback of Utiyama’s approach to identify the diffeomorphism param-
eter as a combination of an independent translation parameter and an indepen-
dent rotation parameter inspired a different approach to PGT. This approach
is algebraic and concerns itself with gauging the Poincaré group directly. This
is similar to the procedure introduced by Stelle and West [48] for the SO(3,2)
group spontaneously broken to the Lorentz group. In the group gauging frame-
work, one considers the Poincare gauge theory similar to any ordinary nonabelian
gauge theory, without discarding the translation part of the Poincaré symmetry
in favour of general coordinate transformations. However, the translation part of
the transformation does not allow the Poincaré group to have a pure Yang-Mills
type gauge description. In the next subsection we will briefly discuss the group
gauging procedure.

2.1 Lie algebraic approach to PGT

The Poincaré group is a composition of translation and Lorentz generators. The
group has ten parameters. Four of them correspond to translations (e#) and six
of them correspond to Lorentz transformations (w*”). The Lorentz parameters
and generators are antisymmetric. We denote the generators of translation and
Lorentz transformations as P, and M, respectively. These generators satisfy the
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following commutation relations,
[Py, P, =0
[M/Wa PO'] = "7;wP1/ - T]VUP#
[Myuw, Myo] = nupMyo — Mo Mup + Mue Mpup — ypMyo (2.6)

The parameters e, w"*” are constant for the global Poincaré group. The global
symmetry is transformed to a local one if the parameters are considered as func-
tions of spacetime. To restore the algebra new gauge fields are in-
troduced. The transformations of these new gauge fields are derived within the
framework of nonabelian gauge theories. Different techniques have been proposed
to find the connection between the diffeomorphism and translation parameters.
We will try to highlight the main results of this Lie algebraic approach.

A Lie algebra valued gauge potential can be introduced in the following manner,

1
A, = Pae,* + §Mabwzb (2.7)

where ‘a’ represent local indices while ‘u’ represent global ones. The introduced
gauge fields e,% and wﬁb are associated with translations and Lorentz transfor-
mations respectively. They will be identified as the vierbein and spin connection
of Riemann-Cartan spacetime. The gauge transformation for the potential A, is
given by

0A, =D,A=0,A+ A, Al (2.8)

where ‘A’ is the gauge parameter and ‘D)’ is the covariant derivative. The gauge
parameter can be expressed in terms of the Poincaré group parameters and gen-
erators as,

1
A=e"P,+ 5wO‘f@Maﬁ (2.9)

where ¢ and w®? are now functions of spacetime. Using [Eq. (2.7)} [Eq. (2.8) and
Eq. (2.9) land by exploiting the Poincaré algebra|Eq. (2.6)] we obtain the following

transformation rules for e,* and wﬁﬂ
56(1_8 a ab+waeb
u = Oue’ — @, pe b€,
0w = 0w + whew! + Wl (2.10)

The field strength F),, is given by its usual definition
F.UV = [Dua Dv]
= P,F%, + %MabF“bW (2.11)
where
F® = 0uey — Ovel, — wcer + @ ey

ab ab ab a cb a cb
F®,, =0,w", - 0,w", —w, " @’ +w, @, (2.12)
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The field strength transforms covariantly under the nonabelian gauge transfor-
mation.

The main aim of this gauging procedure is to relate the transformations
Eq. (2.10)| with appropriate spacetime transformations. Analysing [Eq. (2.10)|
it can be realized that the variation of e, is determined by both translation and
rotations whereas the transformation of wzb is entirely determined by the lo-
cal Lorentz rotations. This suggests that diffeomorphisms can be connected to
the translation parameter € in this Lie algebraic approach. To understand this
connection we define the diffeomorphism parameter,

= eyel (2.13)

A

where e”, is the inverse of e}, following,

exle) =6 ; e\le) = o} (2.14)

The vierbein helps to express any vector or tensor in the flat Minkowski spacetime
to that of the curved spacetime. However we still have to show that it satisfies
the correct transformation rules under general coordinate transformations.

4 we have to impose a curvature con-

To study the dependence of w,“, on ey
straint,

Fu*=0 (2.15)
|Eq. (2.15)|and [Eq. (2.12)| together imply,

8#63 - 81/62 - w,uacel/c + wuaceuc =0 (216)

To get an expression of w® in terms of e,® we contract [Eq. (2.16)( by egeg,

o
0 = eheyOuey, — egeydyey, — @, el + @ ey (2.17)

Changing d, b and a cyclically will provide the following two expressions,
0 =eleduel — eheldyel —w, el +w dbe“ (2.18)

and
b

wnd
Now by adding [Eq. (2.17)| and [Eq. (2.18)|, and subtracting [Eq. (2.19)| from the

sum, we obtain,

0 = eled,el — egeg&,ez —w, el + wubaeg (2.19)

1
wuab =3 [—e/\“ (aue()’\ - 3,\€Z> +eM (865 — Oxel)

—l—efLe)‘aepb (8»92 - 8,06&)} (2.20)

The next step will be to verify that this expression of wuab Eq. (2.20)|is consistent
with the variation of e}, under a diffeomorphism. To do this one has to substitute
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wzb in de,® by [Eq. (2.20)} First we will simplify the second term of the right
hand side of the first equation of [Eq. (2.10)

1
D = 0,0 = e, — uEex" + 5 [gAaHeAa — o5l

+ebe)‘baue>\a + ebe)‘a(%\eub + 6be“08pe>\c(e”“e’\b — e)‘“epb)} (2.21)

Substituting [Eq. (2.21)in [Eq. (2.10)| gives,

b
€
det = E2he,” + 9uien + wel, + 5 [(e)‘aﬁ,\e#b + el,’\aue)‘“>
+ (e)‘b&\ez + ei@uekb> - eZeA“ (epb(?pe)\c + epc(%\epbﬂ (2.22)

The expected transformation of e); will be obtained provided the term in the
parenthesis vanish. However, this term does not vanish by algebraic means. One
way to achieve this is to invoke a flat geometry in the tangent space and introduce
the basis vectors e(,) along with the basis one forms w(® . Then the Lie derivative

of w(® along e(p) must vanish. Thus, in this coordinate basis [49]
eMAye b + ex9,er =0 (2.23)

This relation [Eq. (2.23)| ensures that e}, transforms correctly under diffeomor-
phisms. Thus the Lie algebraic approach helps in identifying the Poincaré group
in Minkowski spacetime with the tangent space at a point in the curved spacetime.

Note that one shortcoming of this approach is that setting the gauge curvature to
zero was not sufficient to ensure the identification of the translation gauge field
with the vierbein. This required an additional geometrical input. In contrast,
one directly finds this connection between the translation gauge field and the
vierbein in Utiyama’s approach. The connection between the Utiyama approach
and the Lie algebraic approach has been established in [48] by introducing an
extra Poincaré translation vector. In the following section we will briefly discuss
this aspect.

2.2 Connection between Lie algebraic and field theo-
retic approach to PGT

In this section we will highlight the connection between the algebraic and
field theoretic approaches following [4§]. According to [48] to construct a gauge
theory of the Poincaré group, nondynamical gauge degrees of freedom ¢® have to
be introduced in addition to the gauge potentials. ¢* will transform under the
infinitesimal global Poincaré transformations,

5q% = wq® + €* (2.24)
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If we consider local transformations where the parameters are functions of space-
time, then an action invariant under the global transformation would
no longer be invariant. In order to restore the invariance, the ordinary deriva-
tives have to be replaced by suitable covariant derivatives. Two types of covariant
derivatives can be introduced. One is D,q“, such that it transforms inhomoge-
neously like ¢®.

D,q" = 04" + Qabﬂqb (2.25)

This new derivative in [Eq. (2.25) will transform as a covariant derivative on

Eq. (2.24)] should,
8(Dug") = wyD,ug’ + D, (2.26)

IEq. (2.24)} [Eq. (2.25)| and [Eq. (2.26)| enforces the transformation of Q%,,,

5Q™ = 0uw™ + w QP + W@, (2.27)
It is clear that the new field Q“bu transforms like w“bu introduced in the last
section. Thus Q“bu can be identified with wabu.

The second kind of covariant derivative can be introduced to restore the invari-
ance of the action under local transformations provided the covariant derivative
transforms homogeneously. We will define this derivative as,

Duq" = Dug® + Q, (2.28)
We demand that this derivative will transform like,
5(Duq®) = wyDug (2.29)

where Q¢ is the new gauge field. The condition [Eq. (2.29)| ensures the following
transformation of Q%,,

0Q%, = 0, — Q%" + W Q" (2.30)

Eq. (2.30)[ implies that the gauge field @Q%, can be identified with e, of the
last section. The next step will be same as the Lie algebraic approach - the

introduction of a Lie algebra valued gauge potential In the next section
a brief analysis of gauging the Poincaré symmetry of a Klein-Gordon field in
Minkowski spacetime will be given. This will help in understanding the formalism
proposed by us for the non-relativistic case.

2.3 Gauging the Poincaré symmetry for a field theo-
retic model

In this section we will revisit PGT as a field theoretic approach. This approach can
be applied to any Poincaré invariant field theory of interest, defined on Minkowski
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space. As an example we will here consider the complex Klein-Gordon scalar field.
The corresponding action is given by

S = / d*z [ 0,9 0 — m*¢*¢] (2.31)
The action [Eq. (2.31)|is invariant under It can be demonstrated using

the following variation of the action under any coordinate transformation,
AS = / da’ L'(2)) — / dz L(x)
_ / e (L) = £(2) + £ (x) — L(2)] + / dha 9,6 L(x)]
= [t €0,000) + BoL (o) + 0,6 L(w) (2.32)
The action is invariant when AS = 0. This results from £ satisfying,

AL = €19, L(x) + 6oL (x) + 0, L(x) = 0 (2.33)

To verify whether the complex scalar field satisfies the condition one
has to use the form variation of the field. The form variation is defined as, dg¢ =
¢ (x,t) — ¢(x,t). Note that we are dealing with scalar fields for which ¢'(2/,t') =
¢(x,t). Therefore under the transformation the form variation of ¢ is,

dop = —[wH 2" + "]0u¢

1 1
= <2w)‘”M)\y - EVPV> ¢ = (‘2‘«0)\”2)\11 + fVPu> ¢ (2.34)

where w2 + e = &*. M, and P, are rotation and translation generators
respectively. X, is the generator corresponding to the spin part in the rotation.
The derivative of ¢ will transform as,

00(0u0) = —[w’o2” + €”]0u0pp — w’u0pd
_ _%wﬁzaﬁam 0,06 — P MONo (2.35)

Applying [Eq. (2.34)} [Eq. (2.35)| in [Eq. (2.33)| one can prove that the action
Eq. (2.31)| satisfies AL = 0. The total variation of the field and the coordinates
under localized Poincaré transformations are defined as,

1 ..
dp = _iw” ()20
ozt = &H(x) (2.36)
where we have labelled the total variation of the field in Latin indices and those
of the coordinates in Greek indices.

For global infinitesimal transformations, the parameters are constants. When
this symmetry is localised the parameters will depend on spacetime. One can
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separate coordinate and field transformations by choosing &* in dz# = &* as
the independent parameter instead of €*. This choice allows one to consider
generalised transformations with &* = 0 but having non-zero w*”. The action
would not be invariant under this local transformation as the transformation of

the field derivatives given in [Eq. (2.35)[ now changes to,
1 .. 1 g
00(O¢) = — 5" BijO¢ — 5 (Ohw'" ) Xij¢ — EAONOkD — OkE O (2.37)

Therefore to restore the invariance under this local transformation we have to
proceed with the following two steps;

— Introduce tetrads (vierbeins) to relate between global and local coordinates

— Introduce some new gauge fields by defining covariant derivatives

The covariant derivative with respect to the global coordinates is,

1 .
Vu(ﬁ = 8,@ + iwlj (x)Eijgt (2.38)

To restore the invariance we require this derivative to transform as,
1 ..
00(Vug) = =505V b — (0,6 Vad — €03V 6 (2:39)
This enforces the transformation of the new fields w®  as,
S0, = Opw'l — (0,EM @Y\ — @, + WMt — WMy (2.40)
The total variation of V¢ can be determined from its form variation [Eq. (2.39

§(Vud) = 60(V,u9) + £V, = —%wij %V ud — (9,6M Vo (2.41)

It is evident that the total Variation is not covariant due to the presence
of the last term. Therefore we have to define another covariant derivative with
respect to local coordinates which will provide the required transformation. This
is unlike an ordinary gauge theory where one covariant derivative is sufficient to
restore the invariance. This reflects the fact that the theory cannot be described
as a pure gauge theory due to the consideration of both translations and Lorentz
transformations.

As [Eq. is not sufficient to restore the local invariance we will define the
second covariant derivative as,

Vi = e Vo (2.42)

To transform covariantly under local Poincaré transformations this derivative

[Eq. (2.42)| has to vary as,

1 A
(Vi) = —§w”zz‘jvk¢ — W' Vo (2.43)
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This will be satisfied provided the new introduced fields b;* transform under the
local transformation in the following manner,

dept = wkiei“ -+ ekAa)\fu (2.44)

It is easily understood that ex” is the vierbein. After acquiring the required
covariant derivatives, the next step is to construct the invariant action. To achieve
this we will follow two steps,

- £(¢7 a,uqb) — ‘C/(gb’ Vaqb)

— Change the measure to account for 9,6 # 0 under local transformations

A suitable choice of measure is e = det (e’,,) as it satisfies,
de+ (0,6")e=0 (2.45)

which is necessary to satisfy AL = 0 under the local transformation. Thus
following the two steps we finally attain an action which preserve its invariance
under the local Poincaré transformation.

S = / dz eL(¢, Vi) (2.46)

The local Klein-Gordon action will be as follows,

S = / d'z e [naﬁeaﬂvuqb*eﬁyv,,gi) - m2¢*¢} (2.47)

2.4 Geometrical interpretation of PGT

It is possible to develop a geometric interpretation of the background from both
the Lie algebraic and field theoretic approaches to PGT. One has to begin by
introducing a metric in terms of the tetrad (vierbein).

a

G = Napeliel, g =nPelel (2.48)

Using [Eq. (2.44)| we can attain the appropriate transformations of the metric
under the diffeomorphism as follows,

5g;w = _8,ufpgpu - 8V§pgup - fpapg;w- (2.49)

We thus identify the gauge fields b’ introduced during localization as vierbeins.

Now we can appreciate the action as the complex Klein-Gordon scalar
minimally coupled to a curved background (M),

S = / d'z /G [¢"V "V o — mP*g] (2.50)
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Next we will derive some relevant quantities corresponding to the background.
The two types of covariant derivatives [Eq. (2.38)] [Eq. (2.42)| will give rise to two
distinct field strengths,

1 ..
Vi Vil 6 = 3RS0

1. .
Vi, Vil¢ = §kalzz’j¢ —T'uVig (2.51)
where
Rijuv zﬁuwf,j — 8,,wff + wfuwlj,, — wf,,wlju
T'w =ext e’ T, = ex' e’ (Ve — Vyel,) (2.52)

The quantities R% uvs Ty, are called the Lorentz field strength and translational
field strength respectively. The Jacobi identities for the commutators results in

the following Bianchi identities [12],

vpo i vpo i k
PN T po = €PT R pe€”

PV ,RY =0 (2.53)

If we consider the dynamical curved background and minimally coupled matter
fields to it, the free Lagrangian should be an invariant density depending only on
the field strengths. Thus the complete Lagrangian [12] is of the following form,

[" = e‘cB(Rij/uJ’ T/iy) + 6£M(¢a Vk¢) (254)

where Lp and L), are the Lagrangians corresponding to the dynamical curved
background and the matter coupled to it respectively. In contrast to the Yang-
Mills theory, in PGT an invariant quantity linear in field derivatives can be con-
structed,

R = el"uejVRijw, (2.55)

Therefore from one can construct the Einstein-Cartan action [15,(16],

SEC:/ d*z (—aR + L) (2.56)

We can further determine the connection for the curved manifold (M) using the
‘vierbein postulate’. For any general curved background (C) the metric obeys the
metricity condition, i.e. vanishing covariant derivative of the metric (D, (I') g, =
0). The manifold (C) is equipped with a linear connection I'. If the connection
is symmetric it has the following expression,

1
Pﬁp = ig'u)\ (8Pg)\l/ + al/g)\p - a)xgyp) . (257)
From the commutator of the covariant derivatives the Riemann tensor can be

derived,

R#u)\p = 8)\F5p + Fg)\l—‘gp - (9p1_‘5)\ - ng Z)\a (2'58)
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A general connection also has the antisymmetric component called the torsion,
no_ M I
T, =TT, (2.59)

Note that the notion of parallel transport in the M-frame works through the spin
connection w",,, while in the C-frame it is described by the manifold connection
I';,. However the two notions will agree as @ and I' are connected through the
‘vierbein postulate”.

Dy(w+T)e', = 0ue’, + @l e, — T ey = 0. (2.60)
From [Eq. (2.60)[one can get I' in terms of the spin connection .
FZ/\ = ei”@\eiy + wij,\ei“ej,/ (2.61)

Deriving the variation of I', from [Eq. (2.61)| and comparing with the variation
of I', under diffeomorphism,

ot = -0, I‘Z/\ — O\ T, + 0, [P\ — 8,0\&" — & 9, (2.62)

we observe a similar variation of dw" p in [Eq. (2.40)l Identifying the tetrad

and the spin connection with the ‘gauge potentials’ e’, and w",, one can say
that spacetime symmetry transformations (namely diffeomorphisms) generate the
same transformations as the Poincaré gauge transformations. Using this expres-

sion of ' [Eq. (2.61)| in the geometric definitions of the Riemann [Eq. (2.58)| and
torsion [Eq. (2.59)| tensors, we can conclude that [12],

T’fj/\(l“) = ei'uTiz/A(w) (2.63)
R“VAP(F) = ei”ej,,R”Ap

Thus we see that the translational and rotational field strengths (77, RY A\ p) are
interpreted as the torsion and the Riemann tensor respectively. In addition, using

(Eq. (2.60)) and [Eq. (2.48)| we recover the ‘metricity condition”
Dyu(D)gur = Dy(w + D)gyr = Dy(w + D)mije’ el = 0. (2.64)

Therefore the correspondence of the Poincaré gauge structure with the geomet-
rical manifold picture has been established. We thus observe that the Poincaré
gauge theory lives on a Riemann-Cartan manifold with torsion. In the next chap-
ter we will formulate the localization prescription of Galilean symmetry.



Chapter 3

Localisation of the (alilean
symmetry for scalar fields

We begin with a basic description of Schrodinger fields on flat space and its
symmetry algebra. Following this a detailed discussion on the localization of
the Galilean symmetry for scalar fields is given. As an application the resulting
theory is shown to satisfy NRDI.

3.1 Schrodinger fields on flat space

Two fundamental requirements of non-relativistic field theories are that they be
Galilean invariant and that the number of particles is a conserved quantity. The
conserved particle number is a reflection of the global U(1) symmetry of the
theory. Other symmetries like conformal invariance may be imposed to restrict
the theory further. A simple example of such a theory is the complex scalar field
with the following action,

' 1
S = /dtd% B(qb*atgz) — pOsp*) — %am*a% (3.1)

The first parenthesis of ensures the hermiticity of the action. p = ¢*¢ is
the conserved particle number density. The most important feature of this theory
is that the kinetic term contains a first order time derivative as well as a second
order space derivative. This is sufficient to ensure that ¢ contains an annihilation
part and the corresponding particle propagates forward in time. The theory
contains no antiparticles by construction. Unlike relativistic theories where mass
enters as a coefficient of the potential, here mass is a passive parameter in the
kinetic term. The equations of motion for ¢ and ¢* following the Euler-Lagrange

24
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equation are,

1
—ith = — D
2m

1
0™ = —o* 3.2
10" = 5 -LI¢ (3.2)

The action [Eq. (3.1)|is invariant under the global gauge transformation,

¢ (2,1) = (. 1) (3:3)

where « is the gauge parameter. Under this transformation the derivatives acting
on the field transform homogeneously. Now if we consider local gauge transfor-
mations i.e. the gauge parameter o also depends on spacetime, the action is no
longer invariant. To recover the homogeneous transformations of the derivatives
on the fields, one has to introduce new covariant derivatives,

Dy = 0i¢ + iAo

Dy¢ = 0k¢ + iAo (3.4)
These derivatives will transform covariantly provided the gauge fields Ay and A;
transform under local gauge transformations in the following way,

6 = AO — 8ta

Replacing partial derivatives by gauge covariant derivatives helps to recover the
invariance under local gauge transformations. Ay and A; can be identified as
scalar and vector potentials respectively in Maxwell’s electromagnetism. The

application of Noether’s theorem results in the conserved current, which for global
gauge transformations provide

Z’ * *
Ji = %W i — $0;p"] (3.6)
Similarly, the conserved current under the local gauge transformation is,

Z‘ * *
Ji = %W Di¢ — ¢D;¢*| (3.7)

3.2 Bargmann group

Spacetime symmetries of non-relativistic systems can be represented in terms of
the Galilean group. The flat spacetime symmetry group corresponds to spatial ro-
tations, Galilean boosts, time and space translations. The generators for rotation,
boost, time translation and spatial translation are respectively,

Aab =Tq 0y — 2p04

K, =mx,

H =0,

P, =0, (3.8)
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The Galilean group has 10 parameters and is thus 10 dimensional. Unlike Lorentz
transformations every parameter of the Galilean group is real. This group is com-
pletely determined by the composition rule. According to the Wigner theorem,
for every continuous spacetime transformation there exists an unitary operator
which acts on the space of states and observables. The corresponding Lie alge-
bra is spanned by the generators subject to the following commutation

relations,

(Ko, Py =0 (3.9)

This Lie algebra can be appreciated as the classical limit of the Poincaré algebra
in the ¢ — oo limit. However, we will be concerned with massive theories which
are not faithfully represented in We will thus be interested in defining
a Casimir invariant for this group and will deal with projective representations of
the Galilean group. This is equivalent to the unitary representations of the non-
trivial central extension of the universal Galilean group by a one dimensional Lie
group. The corresponding Lie group is known in the literature as the Bargmann
group [33]. In contrast to the Galilean group, this group has a central charge M
which is a Casimir invariant i.e. commutes with all other generators of the group

Eq. (3.8)} The last commutation relation of [Eq. (3.9)| will be modified for the

Bargmann group as follows,
[Kaa Pb] = Méap (310)

In the next section we will discuss our proposed formalism to attain NRDI.

3.3 Gauging the Galilean symmetry

In 9] the Galilean symmetry was localized for a non-relativistic field theoretic
model. In this section, the localization procedure and its key results will be
discussed in detail. The first step of the procedure involves the consideration of a
general non-relativistic action invariant under global Galilean transformations,

S = / dtd®zL (¢, 0y, O p) (3.11)
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where the index ‘¢’ and ‘6 = 1, 2,3’ denote time and spatial coordinates respec-
tively. In covariant notation, these can be represented collectively by p. However,
in the localization of the Galilean transformations it will be important to maintain
the distinction between space and time. This will be further elaborated below.

The infinitesimal global Galilean transformations under which the action
[Eq. (3.11)|is invariant, will be parametrized in the following way :

at — gt (3.12)

where

€0 = —¢, =€ +uwpd —v't=n"—0't (3.13)
€, €, wY and v’ are the parameters corresponding to the time translation, space
translation, spatial rotation and boost respectively. The rotation parameters w®
are antisymmetric under the interchange of indices. These parameters are con-
stant for the global transformation. The invariance of the action[Eq. (3.11)| under
requires that AL either vanish or be a total derivative (Eq. (2.33)).
This will be ensured by two conditions, the first being that 9,£* = 0 for the
global case. The second condition is that the field and its derivatives will trans-

form under as follows,
6§d = €dip — 00y + t0'0;p — imu'zid
5 Okt = €0y (Or9) — (n° — v't) 8;(Op) — 1MV Ope(wi4) + wi ™ O
6§50 = €0y(010) — (* — tv")3;(0r9) — 1M 'z 01 + 1 (3.14)

Note that under Galilean boosts the field transforms as,

ot ) = e%mv2t_imvixi¢(t, z) (3.15)
As our procedure deals with infinitesimal transformations, we will be interested
in the term linearly proportional to the boost parameter. When we localize the
Galilean transformations, the transformation parameters €, €/, w” and v® are
no longer constants, and hence 9, # 0. Keeping in mind the nature of non-
relativistic spacetime, the most general local transformations are given by

t—t—e(t), = a2, t) + wh(w, )l — o'z, )t (3.16)

The action which was invariant under global Galilean transformations is clearly
no longer invariant under the local ones. This follows from 9,£" # 0 and hence

the derivatives of ¢ do not vary as stated in [Eq. (3.14)|

800k = —E10,(Opd) — OO — imOy (v'w;9)
500t = —E10,,(0rp) — 01+ 0up — im0 (v' @) (3.17)

To retain the invariance, the next step involves the introduction of additional
gauge fields which are defined through covariant derivatives. Like other gauge



3.3. Gauging the Galilean symmetry 28

theories, the gauge covariant derivatives with respect to the global coordinates
are defined as,

Dy¢ = Or¢ + iBro
Di¢p = 0rp + iBiop (3.18)
where By and By are new fields. Using [Eq. (3.17) and [Eq. (3.18)| the variations
of these covariant derivatives can be derived as follows,
SoDip = — €10, Dy — 0,E" Dy — imu'x; Dy
i¢(00 By + €10, By + 0B, — mi'x;)
80Dk = — E* 0y Dy — Ok Dyp — imv' i Dipp
l¢(50Bk + §“8uBk + 8k§qu, — mug — m@kvla:z) (3.19)

It can be noted that choosing dgB:, doBr appropriately to make the term in
the parenthesis of vanish is not sufficient to restore invariance as
Dy¢ and Dy¢ do not vary like This is similar to what one observes in
PGT. In order to remedy this, we proceed in two steps inspired by PGT. First,
local spatial coordinates ‘x®’ (a =1,2,3) are introduced, which will also help in
providing a geometrical framework to the local Galilean transformations. Local
spatial coordinates 2%, a = 1,2 are trivially connected with the global coordinates
z' by,

% = 50! (3.20)

We then introduce additional gauge fields by defining the local covariant deriva-
tives in the following way

Do¢ = 0Dy + 6" Diop
Do¢ = ."Dyop (3.21)
Daqﬁ now transforms as required,
60Dup = —£9, Do — imvPzy Dy — imuvad + we Dy (3.22)
if the fields By, and X,* vary according to,
0§ By, = —€"8, By, — k&' By + mOyv'z; + m (v, — Ay vq)
058" = €10, 0" + 056" + wa" By (3.23)
Similarly Do¢ would do the same,
80Dod = —£+9, Do — imuv’azy Do + v° Dyp (3.24)
provided the variations of By, ¥o° and Xo* satisfy,
8§ By = —£"9,By — 016" By, + mEoF Ay v, + mi'a
55500 = —£99,%0° + 0:£°%,°

, 1
5§ 0F = =19, %0k + 8,67%0" 4 0" + Fubzb’f (3.25)
0
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Thus it can be observed that the local covariant derivatives transform as required.
In the following step, the partial derivatives in the action [Eq. (3.11)| are replaced
by these local covariant derivatives.

£(¢7 at¢a ak¢) - ’c/(¢7 D0¢7 Da¢)

L' now satisfies,
SoL' + 1oL =0 (3.26)

Note that the condition still does not hold. As the factor J,&" in
Eq. (2.33)| comes from the Jacobian of the coordinate transformations, the invari-
ance of the total action under the local transformations can be accounted for by
a change in the measure. If we rescale the Lagrangian density by A,

L — AL (3.27)

then to preserve the invariance under the local Galilean transformation, A has to
satisfy,
SoA 4+ EHOUN + 0, 6MA =0 (3.28)

The relation [Eq. (3.28)| follows from [Eq. (2.33)l It can be demonstrated that the

appropriate Jacobian for the Galilean transformations is,

A= et (3.29)
2o
where A;® is the inverse of X,*, satisfying the relations
At =06L s B =68 (3.30)
The variation of Ax® can be derived using [Eq. (3.23)]
SN, = —&M O, AL — A%0kE" — Wy AY (3.31)
Using and the following relation,
SoM = —MA%, 6o3.%, M = det A,° (3.32)

One can see that the A satisfies [Eq. (3.28)

The result of our whole procedure is the following action which is invariant
under local Galilean transformations,

5= / dtd3z A L (¢>, D0¢,Da¢) (3.33)

As a concrete example we will consider the complex Schrodinger scalar field on
Euclidean space,

s= [t [ i [; (6006 — 901" — ;nam*am] (3.34)
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This action is invariant under the global Galilean transformations and
the U(1) gauge transformation considered in section Following the
localization procedure described above, the Schrodinger action invariant under
the local Galilean transformations is,

S = / dt / Bz A B <¢*Do¢ - ¢Do¢*) - %Bm*b% (3.35)

In the following section we will demonstrate the NRDI of this action.

3.4 Application of the localisation procedure

The importance of the construction will be appreciated in this section.
This construction naturally leads to a 3-d spatial diffeomorphism invariant action.
To demonstrate that corresponds to a matter field coupled to a curved
background, we need the spatial metric to be manifest in the action. It is instruc-
tive to recall a property of differential manifolds equipped with a metric, that the
determinant of the metric tensor is equivalent to the square of the Jacobian. This
property is reflected in the invariant measure in the relativistic context, which
is given by \/|h|d"x, where |h| is the (positive) determinant of the metric. In
the invariant measure is given by which suggests that the
37 and ‘A’ fields are related with the metric. In the following subsection, it will
be demonstrated that this is indeed the case.

3.4.1 Non-relativistic spatial diffeomorphism invariance

In order to achieve 3-d spatial diffeomorphism we have to consider constant time
indicating that time translation £ = —e should be vanishing. Then the local
Galilean transformation is equivalent to the transformation,

't — '+ £ (x,t) (3.36)

where £ is an arbitrary function of x and ¢. From the set of transformations
one can find that when € = 0,%" = constant. Without any loss of
generality we can take Xy = 1. Note that even with this choice of time,
actually represents time dependent diffeomorphisms.

To get a geometrical picture we introduce the spatial ‘metric tensor’ h;;,
hij = 8eaA A, (3.37)
Using the transformation relation of A% from [Eq. (3.31)| the metric transforms

as,

Sohij = —E*Okhij — hir0;€" — hy;0i€F (3.38)

We find that the transformation of h;; is the same as those under a diffeomor-
phism. Thus A%, can be identified with the inverse vierbein. The change in
measure A will be v/h.
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Using these in [Eq. (3.33)| the local Galilean invariant action reduces to,
S = / dtd3eVhL (¢, Dy, f)a¢>) (3.39)

which is invariant under 3-d non-relativistic spatial diffeomorphism
We can appreciate the action as matter fields coupled to a curved
background. As an example, the action of the complex Schrodinger field on a
curved background will be,

S = / dt / Brvh [; (¢>*Dt¢ - ¢Dt¢*) - ;nf)agb*[)m] (3.40)
Now one can simplify the last term in the parenthesis as,
Da¢*Da¢ = 6", %y Dy¢* Dip = WM Dyg* Dy (3.41)
where
R = by kst (3.42)

is the inverse metric satisfying,
A by, = 6F (3.43)

The ¥, are the vierbeins connecting the tangent space and the curved 3-d
space, on which the theory is now formulated. Using [Eq. (3.41)|in [Eq. (3.40) we
obtain the most general 3-d diffeomorphism invariant Schrédinger action as,

s— [t [ @i [; (6°Duo— 6D16") — 59" Dy Dis (3.44)

Note that it is very easy to take the flat limit of one simply replaces
g by 6% and substitutes covariant derivatives by ordinary derivatives. This

immediately reproduces[Eq. (3.34)] We will provide the total covariant expression
for [Eq. (3.44)[ in |[Chapter 5] where the geometric properties of the background
will be identified with the NC geometry.

In the following chapter we will extend this localization procedure to consider
vector fields in addition to the scalar fields. It will be demonstrated that spatial
diffeomorphism will still be preserved.



Chapter 4

Localisation of (Galilean
symmetry for vector fields

In the previous chapter we explicitly discussed the localisation of spacetime sym-
metries, specifically the Galilean symmetry, for non-relativistic scalar fields. We
have successfully derived a 3-d spatial diffeomorphism invariant theory. In this
chapter we will include gauge fields in our formalism. As an example first we
consider the scalar field interacting with an external gauge field in 2 + 1 dimen-
sions. Following this we will explore spatial diffeomorphism in dynamical gauge
theories - in particular the Chern-Simons theory.

4.1 Gauging the Galilean symmetry of a model with
scalar and vector fields

We start with a theory where the set of fields contain a gauge field corresponding
to electromagnetic interaction in addition to the scalar field. In other words, we
consider the non-relativistic complex scalar fields minimally interacting with a
vector gauge field in 2 4+ 1 dimensions, invariant under global Galilean transfor-

mations The action will be of the following form,
S = /dt d*x L(p,0u0, Ay, 0,A,) (4.1)

The action [Eq. (4.1)| is assumed to be invariant under the local Abelian gauge

transformations,

¢ — ¢+ iag
A, — A, -0 (4.2)

Under the global Galilean transformation [Eq. (3.12)[ the action |[Eq. (4.1)| would
be invariant provided the scalar field transforms as|Eq. (3.14)|and the gauge field

32
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transforms as [50],

SoAo = €0 Ao — 'O Ag + 'O Ag + v' A = €19, Ag + 01 A
SoAi = €oAi — 'O A; + 'O A; + wil Ay = —€10, Ay + wil Ay (4.3)

where 1’ = €’ + w';a’. Ay transforms as a vector under rotation while A4y trans-
forms as a scalar under the same. Consequently, the derivatives acting on Ay and
A; will vary as,

000k Ao = —5“8u(8kA0) + wklale + ’UlakAl
8000 Ag = —£"0,, (8 Ao) + V' A + v' O A (4.4)

and

800k A; = —€10, (0K Ai) + wil 01 A; + wil ok Ay
8000 Ay = —&"0, (00 Ay,) + v' 0 Ay, + wi'do A, (4.5)

These transformations ensure the following relation,
oL +E10,L=0 (4.6)

For global transformations d,£# = 0. Together they keep 45 = 0 under the global
Galilean transformations, where S is given by [Eq. (4.1)}

Now we make the transformations local Similar to the case of
the scalar field when the parameters of the transformations are local, the partial
derivatives of ¢, Ay, A; with respect to space and time will no longer transform
as [Eq. (3.17), [Eq. (4.4) [Eq. (4.5)l Following the localization procedure stated
in the previous chapter, one needs to introduce covariant derivatives which will
transform covariantly as[Eq. (3.17)} [Eq. (4.4), [Eq. (4.5) with respect to the local
coordinates. The first step in the process of localization is to introduce covariant
derivatives with respect to the global coordinates. We have already introduced

the gauge fields B, in to define covariant derivatives|Eq. (3.18)|acting

on the complex scalar field ¢ with respect to global coordinate.

In addition, new gauge fields C),, F}, will be introduced here to define the global
covariant derivatives for the fields A, as,

D, Ay = 9,Ag +iC, A
D, A; = 0,A; +iF,A; (4.7)

Note that different sets of gauge fields are introduced for Ag and A; due to the
nature of Galilean spacetime. As these global covariant derivatives do not ensure
the invariance of the action under local transformations, in the next step we
define the local coordinates and then the covariant derivatives with respect to
them. For the complex scalar field these local covariant derivatives were already

defined in [Eq. (3.21)} Introducing additional fields ¥0%(t), So® (2%, 1), % (22, 1)



4.1. Gauging the Galilean symmetry of a model with scalar and vector fields 34

in the process we found that the local covariant derivative transform covariantly
[Eq. (3.22), [Eq. (3.24)]

We will follow a similar procedure to construct the appropriate local covariant
derivatives for the gauge fields A,

DoAs = X." Dy Ag

D@A() = EOODQAO + EOkaAO

Do Ay = (8" Dy 4;:)6%

E()Ab = (EOODoAi + EokaAi)(sib (4.8)
where we have denotes the local time coordinate by 0. Plugging the expression

of 3oX4%, 000", 505" from [Eq. (3.23), [Eq. (3.25)| in the variation of the local
covariant derivatives one can observe that these will transform as required,

00(DaAg) = —€10,(VaAg) + wa" VA + vV, Ay

S0(DyAp) = €10, (Vg Ag) + 0"V Ag + 0"V Ay

60(DaAp) = —€"9,00(VaAp) + waVeAp + wpV, A,

80(DgAp) = —€"9,00(VgAp) + vV Ay + wp VA, (4.9)

provided

60Co = —£"0,Co — " Cy, +iAg 0 A

50C) = —€0,Cl — Op€'Ci + iAo 0 (v)) A,

doFp = —&10,Foy — 0:EMF),

SoFy = "0, Fy, — Ok Fy (4.10)

Certain interesting features can be noticed in the variation of new fields that
define the covariant derivatives acting on the gauge field. The variation of the C'

fields have an extra boost parameter dependent term in contrast to the variation
of the F fields.

We can now replace the partial derivatives in the action with the local covariant
derivatives. However 9,6 # 0 under local Galilean transformations and as before,
we need to correct for the measure Thus the action invariant under
the local Galilean transformations will be,

S = /dt A2 A L (¢>, Dad, A, DQAB) (o, 8 = 0,0) (4.11)
In the following subsection this action will be reinterpreted as one

on a curved background. This will naturally lead to a diffeomorphism invariant
theory in space similar to the case of the scalar field [Section 3.4.1
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4.2 Emergence of spatial diffeomorphism

We will now demonstrate that our formalism leads to a diffeomorphism invariant
theory of scalar and gauge fields in 2-d space. We thus consider that the time
translation in vanishes, which implies 3¢” = constant. This allows us
the freedom to fix £ = 1. The local Galilean transformations are then equivalent
to the general coordinate transformations in space [Eq. (3.36)] This indicates
the possibility of reinterpreting the invariance of [Eq. (4.11)| under [Eq. (3.16)| as
diffeomorphism invariance in curved space. The resulting theory |Eq. (4.11)|in the
previous section was formulated in terms of locally flat coordinates. When the
background space is curved, the local flat space is just the tangent space at the
given point of spacetime. In this new interpretation the coordinates labelled by
‘a,b,c- -+’ define an orthogonal basis for the tangent space, while those labelled by
‘4,7, k,- -’ define the coordinate basis for the curved space. In Cartan’s formalism,
the connection between the two is established through the vierbeins. The fields

¥.* can be reinterpreted as the vierbeins, as already observed in [Section 3.4.1

We will now reconsider the transformation of ¥,* obtained from [Eq. (3.23
under the assumption € = 0,

000" = Bl 0ieh — £0;5,F + w.bryk (4.12)

One can notice the dual aspects of the transformation. With respect to the
coordinates 2’ it satisfies the transformation rules of a contravariant vector under
the general coordinate transformations whereas with respect to the coordinates
x® it is a local rotation. In a similar manner, we can observe from the variation
of the inverse vierbein A% that corresponding to its lower index k
it transforms as covariant vector under diffeomorphisms, while corresponding to
its local index « it transforms as an euclidean vector under rotation. It will
thus be reasonable to propose the following connection between local and global
coordinates in the overlapping patch,

drg = S dxy, (4.13)

Note that contrary to [Eq. (3.20), the above connection has become non-trivial
due to the geometric interpretation.

Now we will follow step by step. Thus we will construct a metric
(and its inverse) for the 2-d spatial manifold from the fields ¥, and its inverse

Aka7
hij = 5CdAiCAjd7 hkl = 5ab2ak2bl (414)
The above developments will modify the action [Eq. (4.11)| as follows,

S = / dtd*zvVhL (¢, Do, AQ,DQAB) (4.15)

Rewriting the fields of [Eq. (4.15)| in global coordinates we get a covariant de-
scription of scalar fields interacting with the gauge field on curved backgrounds.
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Thus our theory gives a structural algorithm of constructing spatially diffeomor-
phism invariant theories from globally Galilean invariant theories with the general
structure of To establish this analogy we have to see how the transfor-
mations of the fields and the covariant derivatives obtained from the localization
procedure in the previous section can be reinterpreted in the backdrop of curved
space. Though we are working with vanishing time translations, the appearance
of time in the diffeomorphism parameter £ makes the time arrow relative at differ-
ent points of curved space. Unlike scalar fields the time component of the vectors
in the local coordinates will not be simply equal with that of the curved space.
Using equations [Eq. (3.14)[and |[Eq. (4.3)|we can write the variations of ¢, Ay and
A, in the local coordinates as,

00p = —E£%0yp — imv x4
SoAg = —EP0p A5 +0° A,
00Aq = —EP0Aq + wa Ay (4.16)

In terms of these we will define the appropriate transformations in the curved
space. In this context, the mapping can only be achieved in the overlap of the
two systems i.e in the neighbourhood of origin of the local system.

We begin with the scalar field ¢ whose transformation in curved space is given
by, A

do¢p = —£'0i¢ (4.17)

This follows from requiring that the two descriptions match in the neighbour-

hood of the origin of the local coordinate system. Hence the last term of the

corresponding equation of [Eq. (4.16)| does not appear in |Eq. (4.17). Spatial com-

ponents of the vector field A in local and curved space are connected by a relation

similar to [Eq. (4.13)]
A, = 254, (4.18)

Using the variation of A, from [Eq. (4.16)|and that of ¥,* from [Eq. (3.23)|we can

get the transformation of A in the curved basis,
S0 Ay = —E0; Ay, — OLELA; (4.19)

It is evident from[Eq. (4.19)|that Aj, transforms like a covariant vector on a curved
background. In deriving [Eq. (4.19) we have used the following operator relation,

9z 9
0z, O0x;

=¥ e Nl

0
fa 875% - ga
0
6a:i

0
=&z (4.20)

which has been established using [Eq. (4.13)]
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It has already been emphasized that despite our choice of time the spatial dif-
feomorphism parameters are time dependent. This is particularly noted through
the time component of the vector field, which is related to the time component
in curved space through the following relation,

Ag = EOMAM = Ay + EokAk (4.21)

The transformation rule for Ay can similarly be worked out using the variations
of Ag, Y0¥ and Ay from [Eq. (4.16)} [Eq. (3.25), [Eq. (4.19)]

SoAo = €040 — €' A; (4.22)

Given these transformations for the basic fields, we now need to define the
appropriate covariant derivatives with respect to the curved coordinates corre-
sponding to the local covariant derivatives D¢, Do, DAy, DyAa, DoAp and
DgAg. We denote these respectively by Do, Dio, Di A, DoA;, Di Ao and DyAy.
The following definitions are proposed:

ba¢ = Eakpk¢
Dg¢ = Do¢ + Zo" Dy
DoAp = S 5% DAy
D@Aa = Eak (DOAk + ZolDlAk>
DaA@ = Eak ('DkA() + Eol'DkAl>
D@A(] =DyAy + Eok'DkAo + Zok'DgAk + EokzoleAl (4.23)

The transformation laws of these derivatives can be obtained from the trans-
formations rules provided in [Eq. (3.22)| [Eq. (3.24)| and [Eq. (4.9)] Here we will
explicitly calculate the transformation of Dy¢. Taking the form variation of both

sides of the first equation of we get,

b (Dat) = (605a") Dro + 2" (0D40) (4.24)
From (Eq. (3.22)]) we write
00 (Da®) = ~€'0y (Va6) = ime" Vi (26) + wa Vi (4.25)

Substituting this result in [Eq. (4.24)| and using the transformation of 3,*, we
get the transformation dgDr¢. Working analogously with the other covariant
derivatives of [Eq. (4.23), we find the following transformation rules,

60Dk = —£'0; (Drop) — OkE'Dicp
80Do¢ = —£'0; (Dog) — £¥Dygp
SoDp Ay = —£'0; (DRA;) — Ok Din Ay — 0" DA,
SoDoAr = —€'0; (DoAk) — Ok€' Do A; — €Dy Ay,
oD Ao = —€'0; (D Ao) — k€' DyAg — £'Di A,
80DoAg = —£'0; (DoAg) — £ (D1 Ag + Do Ay,) (4.26)
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demonstrates that the definitions of [Eq. (4.23)| transform canonically.

We can thus formulate an action invariant under general coordinate transforma-

tions by the substitution of [Eq. (4.15) and by replacing the covariant derivatives
in the action [Eq. (4.11)| by the covariant derivatives of [Eq. (4.23)

For explicit calculations we will require expressions for the derivatives Dy, Do,
Dy A;, DoAy, D Ap in terms of the basic fields with well defined transformations.
These expressions are obtained by requiring consistency with Follow-
ing this, we define the derivatives Dy¢ and D¢ as,

Dop = o + By
Dy = O + iBro (4.27)

where the transformation rules for the fields By and By are given by,

SoBo = —&£'9;By — £'B;
SoBr = —£'0;By — k&' B; (4.28)

We observe that By and By transform as the appropriate components of a co-
variant vector. The new vector fields B emerge from the localization prescription
that leads to our formulation in curved space. We similarly define the action of
these derivatives on the ‘A’s in the following way,

Did, = 0,Ap+ iBiAs
DA, = 0OgAg + iByAs
DAy = OpAp+iBLAg (4.29)

These can be seen to satisfy the transformation rules We have thus
successfully provided a detailed description of the fields and the covariant deriva-
tives on the curved background. In the following section we will discuss a couple
of applications of our general formalism. The first model we consider is that of
a complex Schrodinger field theory in the presence of an external vector field. In
the second model, we consider the effect of including a Chern-Simons term.

In addition to local Galilean invariance, one should also analyse the behaviour
of the action |[Eq. (4.15)[ under gauge transformations. Globally, the combination
(Ou¢ + A, ) transforms under the gauge transformation as follows,

0+ iAud — (1 +ia)(ud + iA,0) (4.30)

When the Galilean symmetry is localized the partial derivatives 0, are replaced
by Da¢ (o = 0,a). Now the combination (Dy¢ + iAy¢) transforms as the global
one,

Do +iAad — (1 +ia)(Da¢ + iAs0) (4.31)

provided we have the following gauge transformations of the basic fields ,

¢ — ¢ +iag, Ay — Ay — Dea, Aj— Ag— Dga (4.32)
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where, . .
Doa = S50, Dy = doox 4+ o™ px (4.33)

From [Eq. (4.18)} [Eq. (4.21)| and [Eq. (4.33)[ we can analyse the behaviour of the
external gauge field in curved space under the gauge transformation. It is given
by

Ak — Ak — 8koz, Ao — Ao — 8004 (4.34)
and has the expected form suggested by [Eq. (4.2)]

4.3 Complex Schrodinger field in the presence of ex-
ternal vector field

An important application of spatial diffeomorphism is in the theory of the frac-
tional quantum Hall effect [1-3]. Therefore we will start with the example of a
non relativistic electron moving in an external gauge field given by the action,

5= / dz® / i, [2 (6" B0 — 609°) — 5~ Med* Ao (4.35)
where

Ao = 0o + iAo
Apd = Ops + i A (4.36)

and A, is the external gauge field. The theory [Eq. (4.35) is invariant under
global Galilean transformations [Eq. as can be checked explicitly. The
theory [Eq. (4.35)|in addition is invariant under the local gauge transformations,

¢ —= ¢ —iNp, ¢ — ¢ +iNe", A, — A, +0,A (4.37)
Simplifying |[Eq. (4.35)| we can get,
. . X 1 *
5= [ [ a5 (6000 - d006") - 6*0ta — 5060k
B g1 a6 - 901" (438)
2m om’ " k b ’
According to our algorithm, replacing the partial derivatives by suitable local

covariant derivatives and considering the change in measure, we obtain the cor-
responding theory invariant under local Galilean transformations [Eq. (3.16)]

5= /dxo/dzxaA [; (¢*D6¢ _ ¢D@¢*) _ %DM*DC@ ¢ 6 A;
A,2

Com

* i * T I *
¢ d)+ %Aa(qb Da(ls - ¢Da¢ ) (4'39)
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In the following we will consider spatial diffeomorphism (¢ = 0) where X" = 1.
We can then transform our results in a geometric setting following the algorithm
stated in the previous section.

Let us first consider the special case when the spatial diffeomorphism parameter
&, is time independent. The third equation of shows that, along with
the time independence of &, £o¥ = 0 may be chosen. Under this condition,
Dgé = Dy which follows from [Eq. (4.23)l Using this fact and other definitions

from [Eq. (4.23)|the action [Eq. (4.39)| reduces to,

S= [ [ dan |0 Duo - 0Du7) — 0rda - 54! (5 Du0 D10 )
_Eakzal <2qlnAkAl¢*¢> + Eakzal (2?ZnAk(¢*Dl¢ - ¢Dl¢*)>:|

Using the definition of metric [Eq. (4.14)| this is reduced to a covariant theory in
the curved space,

S = / da’d®zV'h [; (¢*(Do +iAo)¢ — ¢(Do — 1Ag)9*))
—hkl%(pk iAW) (D + iAl)gzb} (4.40)

This action [Eq. (4.40)| can be rewritten as a non-relativistic diffeomorphism in-
variant action,
S = / dz’d*zv/h {

L (6" Dod — $Dod*) — WM Dyop* Did (4.41)
2 2m

by defining,

Doqb = Dyo + ZAogf) = aoqb +1 (Ao + Bo) 10}
Dy¢ = Dy + iApp = Opp + i (Ap + Bi) ¢ (4.42)

Note that under the local gauge transformation [Eq. (4.37)| the theory [Eq. (4.41)

is invariant provided the field B, has the same gauge transformation as A,. It
is reassuring to observe that under the restrictions assumed (e = 0 and ¢ time
independent), By transforms as Ag and By as Ay which has been described ear-
lier. We have thus observed that the result of localizing the Galilean symmetry
of an interacting non-relativistic field theory in flat space also leads to an action
invariant under general coordinate transformations in curved space. The model
considered in this section is particularly important as it pertains to the effective
action for the fractional quantum Hall effect. In particular, the transport proper-
ties of Hall systems can be affected on curved backgrounds (within the composite
boson model) due to the presence of the spin connection and gravitational anoma-
lies. The present formalism would allow us to carry over such investigations in
the non-relativistic limit.
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When the diffeomorphism parameter & is time dependent ¥o* = 0 is not ad-
missible. Then the diffeomorphism invariant action in the curved space becomes,

i 3 B hkl B _
S = /di‘OdQI'\/ﬁ |:2 (¢*D0¢ — QSDO@*) - %Dkﬂs*Dlgb
F50F (0° D — 6Dke") | (443)

We can easily attain the flat limit by replacing the covariant derivatives by the or-
dinary derivatives and the spatial metric by d;;. A simple inspection of [Eq. (4.43

and [Eq. (4.35)| confirms the above.

4.4 Inclusion of the Chern-Simons term in the action

Having considered the action of previous section, particularly in the context of
Hall systems, it will be interesting to further involve the Chern-Simons (CS) term.
Given the topological form of the CS action we expect it to be independent of any
particular form of the metric (modulo boundary terms). However, some subtleties
are involved in NRDI which we will now briefly elaborate on. The CS action is
given by,

Scs = / d%%e“”AH&,AA (4.44)

and can be coupled with both relativistic and non-relativistic models. It will be
convenient to break the action into spatial and temporal parts,

Scs = / dt / d*x geij (ApdiAj — AidoAj + A0 Ag) (4.45)

It can be shown that is invariant under the global Galilean transforma-
tion using the variations Following the method to localize the Galilean
transformation stated in previous section, we can get the corresponding action
invariant under the the local Galilean transformations as,

S = / da” / d%a/\geab (A()[)aAb — A,DyA, +AanA6) (4.46)

The algorithm given in allows us to construct the diffeomorphism

invariant action as follows,
S = /dtd2$ \/Ege“bxakxbl [(AODkAl — A Do A + A Dy Ap)
+ Yo" ADLA; + S0 Ay (DlAm - DmAl)] (4.47)
Note that € is a tensor under local transformations. Thus

Yyl = ek (4.48)
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where € is the Levi Civita tensor in curved space. It is related to the tensor
density €* by,

1
il = K (4.49)

Using the above equations the final form of the CS action in curved space is
obtained as,

S = / dtd*z gekl [(AgDyA; — A DoA; + A Dy Ag)
+ YoM A DL A + S0 A, (DlAm - DmAl)] (450)

We can simplify [Eq. (4.50)[substituting the derivatives D, A, from [Eq. (4.29)[and

exploiting the antisymmetric property of e,

S = / dt d%;g €1 [2 (AgdR A — ARdoA; + ArdiAg)
+220m[Am8kAl + Ak((‘)lAm — amAl)H
= /dt ke A,0, Ay (4.51)

where we have defined the spacetime Levi-Civita density for the NC background
as
Vh SgFE Y Syte® = A (4.52)

We also note that the B field has dropped out from Thus the topologi-
cal invariance of the CS action is restored under non-relativistic diffeomorphisms,
which has also allowed us to determine the form of the Levi-Civita tensor from
the localization procedure.

Using [Eq. (4.19)} [Eq. (4.22)| and [Eq. (4.26)|it can be shown that the action
[Eq. (4.51)| transforms under general coordinate transformations in the following
way

68 = / dxd*xk0; [giekl (AgOr A} — ArdoA; + Akale)] (4.53)

The integrand is a total derivative and drops to zero when integrated over space.
Thus the action is invariant under the general coordinate transformations up to
a possible boundary term, as expected. In the presence of boundaries, as in
the case of Hall systems, the compensating boundary term to be included can be
simplified due to the form of £°. This in particular concerns non-relativistic boosts
at a spatial boundary. The action is likewise also gauge invariant.
Since the gauge transformations are identical to those in the relativistic case,
the boundary terms which restore gauge invariance are the same as those for
relativistic backgrounds.



Chapter 5

Dynamical construction of the
Newton-Cartan geometry

In this chapter we will consider a detailed description of the Newton-Cartan
(NC) geometry in 3+ 1 dimensions. Following this we demonstrate how one can
construct the NC geometry using the fields introduced during the localization of
Galilean symmetry in

5.1 A brief review of the Newton-Cartan background

The NC background is Cartan’s spacetime formulation of the classical Newto-
nian theory of gravity. It is a classical spacetime with a non-relativistic smooth
differentiable manifold ‘M’ which contains a degenerate inverse spatial metric
‘h#¥” and a degenerate temporal 1-form ‘7’ satisfying the following relations,

VB =0 Vur, =0
W7, =0 (5.1)

where ‘V,,’ is the covariant derivative associated with a connection I' on the
manifold ‘M’. (M,h,7,V) is known in the literature as the NC structure of
the spacetime. The relations are the compatibility and orthogonality
relations. We can define the temporal degenerate metric in terms of the one-form,

Tuy = TuTy (52)

As explained in detail in [13] such a structure serves as the basis for a classical
theory of motion in the following way. Given any globally defined and nowhere
vanishing vector £, the one form ‘7,” assigns a temporal length (7,,,£#£” )% This
allows us to distinguish between timelike and spacelike vectors, depending on
whether the temporal length is positive or zero. Likewise, a smooth curve will

be timelike if its tangent vectors (e) are timelike at every point. Note that

43
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this curve is future directed as its tangent vector always satisfies 7,e# > 0. The
orthogonality relation in implies that the subspace of the spacelike
vectors is 3-dimensional. The metricity condition of ‘r,’ indicates that in the
absence of torsion the one-form is closed (V[,7,) = 0). Thus 7, in this case is
locally exact and can be expressed in terms of a global time function (7, = V,t).
Given any time function ‘¢’ and a timelike curve ~ with tangent field e”, the
temporal length of v depends only on the endpoints of the curve. This implies that
we have a well-defined, path-independent notion of temporal distance between
points. Particle trajectories thus follow timelike curves which can be parametrized
by ‘7.

These facts allow the simply connected manifold ‘M’ to be decomposed into
instantaneous 3-d spacelike hypersurfaces ‘Y;’ at constant time ‘¢’. These hy-
persurfaces satisfy the Frobenius condition 7, V, 7y = 0, and as such for any
spacelike vector p# we have p#7, = 0. In general, the metricity condition for 7,
does not necessarily imply that we can define 7 = V¢. This is particularly the
case when J,7,; # 0, which for the NC background implies the existence of a
non-vanishing torsion tensor. We will address this possibility towards the end
of the present section. For the moment, we note that in every case p*7, = 0 is
locally true. Given that h#*” and 7, are degenerate, their inverses do not exist.
Formally, we can define a generalized inverse for the temporal 1-form, 7#, such
that

7, =1 (5.3)

There exists a class of 7% which satisfy the above relation, with respect to which
we can further define a spatial metric, h,,, that satisfies the following relations

hy™ =0

5l = W by + T, (5.4)

Here h#**hy, = P} is the projection operator of the NC background. The vector
field ‘7*’ can be identified as the four velocity associated with the timelike curve.
The corresponding four acceleration (a* = ¥V, ") is spacelike (7,a* = 0) fol-
lowing the metricity condition of the one-form 7,. Thus the four-velocity is time-
like and four-acceleration is spacelike. If the particle is massive the acceleration
satisfies the equation of motion,

F* = mat (5.5)

where F* is a spacelike vector field representing the net force acting on the par-
ticle. The spatial length of a vector {# cannot be considered as (hy,&H&Y )% be-
cause V,h,, # 0. However in this regard A" can be used to assign a spatial
length to any spacelike vector. For a spacelike vector p* the spatial length will
be (h* XuXu)% where h*"x, = p*. All indices of the NC background are raised
using the metric h*".

There exists a covariant derivative which is metric compatible with both the
metrics. A direct consequence of this is that the resultant connection is not



5.1. A brief review of the Newton-Cartan background 45

uniquely determined by these metrics alone. This allows the NC background to
geometrically capture the presence of external forces |[19]. With all these consid-
erations, a linear symmetric connection which satisfies the metricity conditions

given in [Eq. (5.1)| has a general form given by
1
I = 7007 + 5h (auhw + Oyhoy — &,hm,) + W7 )
=T, + h" 1, K, ) (5.6)
iy . in[Eq. (5.6)| represents the inertial part of the connection, while the full con-

nection I'?,,, contains additional non-inertial forces (generating from the Newto-
nian potential) through the term K, [26].

Given the symmetric connection [Eq. (5.6), one can construct the Riemann

tensor in the usual way,
V., Vo VA =R,V (5.7)
Note that for a symmetric NC connection, the following relations hold,

TpR0,, =0, Ry, =0, R, =0, RO, =0 (5.8)

o o () v

The theory considered thus far is completely general. If in addition the Galilean
connection has to possess the correct Newtonian limit of the connection of a Rie-
mannian manifold, then the following additional condition known as Trautman’s
condition is required

R, = RM,, (5.9)

This condition is equivalent to requiring that dK = 0, which implies that
Ky, =20pAy (5.10)
where A, is at this stage an arbitrary 1-form. If we now define

p=T1"A,, MY V¢ = 4dmp (5.11)

then we can use [Eq. (5.8)[ and [Eq. (5.10)| to demonstrate that the Ricci tensor
satisfies,

R, = 4mpT,T, (5.12)

which is the correct Newtonian limit of Einstein’s equations. indicates
that ‘p’ is the mass density involved in Poisson’s equation. We further note that
we can now provide the following equivalent definition for the acceleration defined
earlier

a ="V, " ="K, b (5.13)

The NC spacetime in this form is described by the quintuplet (M, k", 7,, 7", A,),
which implicitly considers the Newtonian connection.
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Non-relativistic spacetimes also do not have a preferred vector field 7/ and this
imposes an additional symmetry-invariance under the following Milne boost [7,8|,

™ — 7' + WMV E, (5.14)

where k#7, = 0. To satisfy the orthogonality relations between 7/ and h,, as
well as retain the invariance of the connection [Eq. (5.6)[ under Milne boost, h,,
and A, transform accordingly.

b = by — (T P) + 1 PR)kp + 1,1 B ks

1
Ay = Ayt Plky = 51 kb (5.15)

The second relation of [Eq. (5.15)|is valid only when the one-form 7, is closed. In
particular, the NC connection which involves torsion is not simultaneously U(1)
invariant and Milne invariant [7].

The Milne transformations of the NC structure is the closest analogue one has
of the “shift symmetry” involved in the ADM formalism for general relativistic
backgrounds. While the NC structure is quite similar to the ADM decomposition,
there are subtle differences which we will now discuss. In the ADM formulation
of general relativity, given a non-degenerate spacetime metric g,,, we choose a
hypersurface with induced spatial metric h,, and normal n* to the hypersurface.

Guv = h,uu — Ny (5.16)

The normal is associated with the choice of time following n, = V ,t. n* satisfies
the orthogonality relation with the induced metric h,,. Both n, and h,, are
degenerate when considered as spacetime fields, but are not so within the pro-
jective formalism. In other words, by labelling spacetime coordinates by Greek
indices and spatial coordinates by Latin indices, h,, is degenerate while h;; is
not. Given the ADM decomposition, we are free to choose an arbitrary vector t#
as our choice of time which need not be hypersurface orthogonal. This vector can
be decomposed in the following way

th = Nn* + N* (5.17)

where N and N* are called the lapse and spatial shift. The choice of time is
thus characterized by the lapse and shift variables, where the latter provides a
freedom in the choice of time for any given foliation of the background. Thus
the gauge variables of the ADM formalism are (h*”, N, N#). In contrast, the NC
geometry involves the gauge variables (hu,, 7", A,). We note further that the
spacetime metric g, satisfies the metricity condition on relativistic backgrounds
and not the induced metric h,,, or n,. For the NC geometry, while we can always
define the non-degenerate “effective metric” ., = hu + 7,7, [51], it does not
satisfy the metricity condition. The metrics h#*” and 7, are those which satisfy
the metricity condition leading to the form of the connection and the introduction
of an additional gauge field A, in the NC structure. Nevertheless, the form of
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the projection operator in both cases take the same form (the second equation of
Fq. (5.4))) H This helps in defining the same covariant measure of the background.
This measure follows from the determinant of the metric G,

1
G = ;e G0GsGp Gos (5.18)
where e#"*? is the Levi-Civita symbol and G represents the non-degenerate metric
of the spacetime. In the relativistic case G,,, = g,,, while in the NC case we have

Guv = Y- This leads to the following results due to

Vi =NVh
Vi =Vh (5.19)

The second equation of is valid for NC backgrounds without torsion
and follows from the fact that the lapse for the NC background is always unity
(rum* = 1). As noted in [51] /7 = V/h is both metric compatible and Milne
invariant despite v, being neither.

We now turn our attention to the dynamics of fields on the NC background,
and of the background itself. We will consider observers who move along 7,
which are the comoving observers of the background, as well as those moving
along the Milne invariant 7# — h*” A,. In considering quantum fields on curved
backgrounds it is desirable to consider foliations with respect to the Killing vectors
of the background, as this ensures that only the fields evolve in going from one
time slice to another. Before addressing this in detail, we note that while 7# is
orthogonal to h,,, it does not satisfy the metricity condition. As such, non-trivial
relations exist between h,, and 7#. From we can obtain the variation
of hy, as,

Ohyw = —2h,,7,)07" (5.20)

In a similar manner the covariant derivative on h, will act in the following way,
v'th, = —2hp(MTV)V,YT” (5.21)

These relations will now be used to understand the dynamics of fields on the NC
background. A covariant definition of time evolution involves the Lie derivative
with respect to the time vector t#. Let us first consider the comoving observer
th = 7H. Tt trivially follows that,

£ =0 (5.22)
and due to [Eq. (5.1)] we also note that
£17, =0 (5.23)

!This is the case for relativistic metrics with a Riemannian signature. In the Lorentzian signa-
ture, the projection operators agree up to a sign on the temporal part. For comparison with the NC
background, we assume the relativistic background has a Riemannian signature.
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Thus the Lie derivatives of the temporal one form and vector both vanish. How-
ever, the Lie derivatives of the spatial metrics is less trivial. For the metric h#*",
we find the non-vanishing expression

Y = LW = TP, — WP T — ROV T

= —2hPry V) (5.24)
Contracting [Eq. (5.24) with 7, we find
Tud-h" =0 (5.25)

This implies that £.h*” is spatial, whose trace is given by,
hyw £ = =2V, 7 (5.26)
The Lie derivative of the covariant spatial metric is as follows,
Lrhyy = 7V by 4+ by Vo 4 hy )V’ (5.27)

Like the contravariant spatial metric, the Lie derivative of the covariant metric is
also spatial with the same trace, up to a sign.

L by =0, WYL hy, =2V ,1° (5.28)

It can now be noted that if 7# satisfies the Killing equation, the Lie derivative
acting on the spatial metrics will vanish. In this case we can consider matter fields
coupled to the NC geometry as an external, non-dynamical classical background.
As non-relativistic theories require the conservation of matter, we further consider
the following Lie derivative of the NC gauge field,

£:A, =7"Ky, +V,(T"A) (5.29)

Using [Eq. (5.11) and [Eq. (5.13)] we see that contracting the right hand side of
Eq. (5.29)| with 7# gives £;¢, while contracting it with h#* results in a® + V9.
We thus see that if the following equations are satisfied

£:0=0, a"=—h"V,é (5.30)

then £7A, = 0. The conditions in [Eq. (5.30) are nothing but the Newtonian
limit of a General Relativistic background. Thus we can consider the curved
background as a fixed classical background for NRFTs when 7# is Killing and A4,

satisfies the Newtonian potential conditions provided in [Eq. (5.30)]

The above discussion can be extended to a Milne invariant choice of time, as
in t* = 7# — h*” A,. In this case a fixed curved background results when 7 and
h#** A,, = AP are mutually commuting Killing vector fields (£, A" = 0; £ 47 = 0).
All the Lie derivatives of the NC fields considered above now also vanish when
the Lie derivative with respect to A* is considered.
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We will now touch upon the particular form of the torsion tensor of the NC
background, which will be important to recover as a consequence of the vierbeins
introduced through the localization procedure. Its form and properties on the
NC background is constrained by the metricity relations, which as a consequence
differ substantially from those of relativistic backgrounds.

When the metric 7, is not closed, one finds the following relation,

TP
—tr, (5.31)

Ot = —

where T7,,, = 2I‘ﬁ/M is the torsion tensor. Thus unlike the relativistic case, here
the torsion tensor cannot be specified independently of the metric. As
further demonstrates, since the clock form is no longer closed we lose the notion
of absolute time for the spatial hypersurface. From the above equation, in [55]

the torsion tensor was considered to have the following form,
Ty, = 2707, (5.32)

thereby appearing to have only a temporal component. This form of the NC
torsion has found certain applications in non-relativistic holography [52,/53] and
condensed matter systems [b4]. However in [56] it is shown that the general
torsion tensor can have a spatial component. Additional properties of the torsion
tensor and its general form will be considered in the following chapter concerning
the scale covariant NC background, where the torsion tensor has particularly
important dynamical consequences.

5.2 Construction of Newton-Cartan geometry from
geometrical interpretation of GGT

Similar to the Poincaré gauge theory which leads to the Einstein-Cartan space-
time [12] the Galilean gauge theory will be shown to reproduce the NC spacetime.
Thus one major application of the localization procedure is the construction of
the NC geometry through a specific identification of the fields introduced during
the localization of Galilean symmetry. A four dimensional manifold can be de-
fined with two coordinate systems - local and global, such that at every global
coordinate point there is a local coordinate system. The previously introduced
field, ¥,*, was interpreted as the vierbein in which maps the global
and local frames. It was demonstrated in |11] that the 4-d manifold endowed with
Yo" and its inverse A,® had the features of the NC geometry. We will discuss
this in the following.

We identify ¥," as the vierbein fields. Then the inverse vierbein A,“ satisfies,

N W D SN WE S (5.33)
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The degenerate inverse spatial metric of rank 3 can be defined as,
RV = 3,5,V 590 (5.34)

where the spatial component (k%) was already defined in [Section 3.4.1, The

temporal one-form of rank 1 can also be defined in terms of the inverse vierbein

field A,,°.
=70 (A% =0,A0" #0) (5.35)

With these definitions, [Eq. (3.23)|and [Eq. (3.25)|in addition leads to the following
variations of A" and 7,

Soht" = —EPDLMM + ¥ D,E" + W7 D€

607—# == —7-#8050 - 60807'“ (536)

Using these relations it is easy to show that the inverse spatial metric and one-
form have the correct tensorial properties,

oz'* oz'v

nv / po
Y (2') = 907 D h?? (x) (5.37)
and 9P
T
Ty (:c/) = %Tp(x) (5.38)

The explicit structure of gauge fields ‘B’ introduced in can be given
by,

By, = B{"Aap + Bi’Aq

B; = B® )\, + B\, (5.39)
where Ay and A, are respectively the generators of rotations and Galilean boosts,
sz are the spin coefficients. Compared to Poincaré case, here Bﬂaﬁ splits into

spatial and temporal part (B,ﬂb, B,%) [29]. Buab are antisymmetric in indices
a,b. The expression for the generator of the Galilean boost is given by A\, = mz,.

The affine connection I'),, will be introduced through the vierbein postulate,

Vi, = 0,A* —=T9 A, + Bﬁ‘ﬁAyﬁ =0. (5.40)
Bl‘j‘ﬁ are the spin coefficients introduced in [Eq. (5.39), For o = 0 we find,
vp,AVO = apAyO - FﬁuApo + BgﬁAV’B =0. (541)

As BuO,B vanishes for Galilean transformation, it implies,

O’ —T%,A," =0 (5.42)
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Therefore we reproduce the metricity condition for 7,
Vur =0 (5.43)

The inverse spatial metric h*” can be shown to satisfy the metricity condition.
From [Eq. (5.33)|and [Eq. (5.40)| one can derive,

0,557 — B, 535" = -T7, 55" (5.44)

Considering 6 = a, 5 = b we get,

050" — BulaSy” = —T'7,%," (5.45)
Multiplying 3,” to [Eq. (5.45)| gives,
20”0507 — By aXa’ Sy = —I'7, 5" 5" (5.46)

Then we interchange the indices p, o,

S0’ 0uSa” — BulaSa 50 = —T%, 5,7 5," (5.47)

Adding [Eq. (5.46)| with [Eq. (5.47)|and using the antisymmetric property of B,
leads to,

V" =0 (5.48)
Thus we can conclude that our constructions of h*" |Eq. (5.34)[and 7, (Eq. (5.35

satisfy the metric compatibility conditions.
We can also consider the “inverses” of the metrics by defining A, and 7# as,
hyp = A ALY (5.49)

and
P = ¥, (5.50)

Using |[Eq. (5.34)| and [Eq. (5.35)| we immediately get,

A1, = L8, A0
= %,/
=0 (5.51)

Also the identifications [Eq. (5.50)|and [Eq. (5.35)|show that

JT
7, = 1.

From the definitions [Eq. (5.49)[and [Eq. (5.50)| we find

h,u,rl’ = A,ﬂAl,“ZO”
= Aua58
=0 (5.52)
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We can also demonstrate that the projection relation is satisfied
Wby, = Sa A = 68 — Tk A,°
=0t —7h7,. (5.53)

This completes the verification of all the orthogonality and projection relations
of the NC background, which has followed directly from the constructs of the
localisation procedure.

The connection F,’i# defined in can also be cast in the general form
of the NC background. We can write from [Eq. (5.40)|
Y, = 0, Sa” + B 50, S0 ” (5.54)
Assuming that the connection is symmetric can be written as,
4, = 300, + T3]
%[@LAVOEO"’ + 0, A, 0P + 0,AL 80P 4 0, A8,
+ B0, 50" + B0A, %, + B A S0 + BYyA Y,
(5.55)
Using X,” = h??A,* (which follows from [Eq. (5.34))), [Eq. (5.35)| and [Eq. (5.50)}

the above expression will take the form as,

1 g a a 1 g a a
Iy, =701, + §hp [Ouhoy — Ay 0N + §h” [Ovhop — A 0y A"
+ B%u A S0 4 B0y A S0 + B A S0 + BUyAL Y (5.56)
Exploiting the symmetricity of I'),, we can write,
1
ih”"[—AyaauAU“ — A0y A") = —0phy — B A Y0 — By A P (5.57)
Using [Eq. (5.57)| we obtain the form of the connection from [Eq. (5.56)
1
[ = TP 0T + 5h (auhw + Oyhoy — aghw) + LK, (5.58)
where the two form K is defined as,
1
hp)\T(“Kl,))\ = ihp)\[TuK,»\ + TI/K,u)\]
1
= §hp>‘[TMB“oVA,\a + 7, B%u A2 (5.59)

GGT thus fixes the two-form ‘K’. The above procedure can also be used to con-
struct other non-relativistic curved backgrounds. For example, the projectable
Horava-Lifshitz background can be constructed using the vierbein fields consid-
ered in this chapter [28]. These fields and their interrelations may not be wholly
satisfied on backgrounds with additional non-relativistic symmetries. In the next
chapter, we will consider this in detail in the context of scale invariant non-
relativistic theories.



Chapter 6

Inclusion of scale symmetry in
the localization procedure

The results of the previous chapters can be extended by including the anisotropic
scale transformation in the localization procedure. We will study the construction
of scale covariant NC backgrounds from the localization procedure. This will allow
us to further investigate the properties of fluids on scale covariant non-relativistic
curved backgrounds, which will be discussed in the following chapter.

6.1 Non-relativistic scale symmetry

In relativistic systems, scale transformations act uniformly on space and time,
while in non-relativistic systems they act anisotropically [34] and is well known
as ‘Lifshitz scaling’. Time gets rescaled ‘z’ times as compared to the space coor-
dinates, where ‘2’ is called the dynamical critical exponent. Lifshitz scaling plays
an important role in condensed matter systems [36] and gravity models which
break local Lorentz invariance like Horava-Lifshitz gravity [5]. The role of this
scaling in strongly coupled systems, have been investigated holographically and is
also found to be relevant in the description of strange metals [35]. The expression
of the scale transformations in time and space coordinates, are given by,

t'=e*t, ' =e's! (6.1)

where ‘s’ is the parameter of the scale transformations. The infinitesimal trans-
formation takes the following form,

g = '+ s, t—t4 zst (6.2)

When z = 1 the spacetime symmetry group involves the Lorentz group while for
the z = 2 case it is the Galilean group. For all other values of z, boost invariance
will be explicitly broken.
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The generators of Lifshitz symmetry for arbitary ‘z’ correspond to the time
translation, spatial translations and the scale transformations. They are denoted
by ‘Py = 0¢’, ‘P; = 9;” and ‘D’ respectively. The explicit form of ‘D’ is,

D = —(2t0; + 1°0;) (6.3)
The operators D, P; and Py satisfy the following commutation relations,

[D,P] =P, [D,R]==zP (6.4)

We are in particular interested in Schrédinger field theory which is invariant un-
der z = 2 Lifshitz scaling. The Galilean symmetry with both the scale and special
conformal symmetry is known as the ‘Schrodinger symmetry’. The corresponding
algebra is called the ‘Schrédinger algebra’ [30], which is a conformal extension of
the Bargmann algebra. Another non-relativistic conformal extension known in
the literature is that of the Galilean Conformal algebra [57]. The generator for
non-relativistic scaling in GCA is,

D = —(;19161 + tat)

In GCA, space and time scale as in the relativistic case and the number of gener-
ators are the same as those of the relativistic conformal group. In the following
subsections we will only consider the Lifshitz scaling with z = 2.

6.2 Localization of scale transformation

The first step of localization involves considering a non-relativistic scale invariant
field theory. As mentioned, the Schrodinger complex scalar fields on Fuclidean
space is invariant under the global infinitesimal scale transformations with z = 2,

b — x' sat, t—t+ 2st (6.5)

where ‘s’ is the parameter of the scale transformation. For the global case ‘s’ is
constant. The action of Schrodinger fields is given by,

s= [t [ i [; (6006 — 901" — ;nam*am] (6.6)

This action is invariant under global Galilean transformations, which was dis-
cussed in In addition it can be explicitly shown to be invariant
(AL = 0) under in (3+ 1) dimensions provided the field and its deriva-
tives vary in the following way,

5o = — <Z$ + &0+ foat) ¢
530k = — <;S + &0 + §O<9t) o0)

5506 = gs + 0+ f“at) Oy (6.7)
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where ¢° = 2st and ¢ = sz’. Note that unlike what happens under Galilean
transformations, here 9,,£" is nonvanishing. On account of [Eq. (6.5), 0,£" = 5s.

Localization of the scale transformation can now be carried out by allowing
the parameters of the transformations to be functions of space and time. The
absolute nature of the non-relativistic time coordinate requires the most general
local scale transformation to be of the following form,

=t 4 s(x,t)rt, t—t+ () (6.8)

Note that at the time of local scale transformations, the magnitude of the time
rescaling parameter always has to be twice the magnitude of the space rescaling
parameter to keep the Schrédinger action invariant. We nevertheless require two
parameters due to the distinction of time and space.

We will consider both the Galilean and scale transformations in the localization
procedure. Under local scale transformations, the derivatives of ¢ will not vary
in accordance with To retain the invariance of the action under both
the transformations, additional new fields need to be incorporated such that the
derivatives of the field ¢ vary covariantly as in This requires the
introduction of gauge covariant derivatives with respect to the global coordinates
defined in the following way

D,p=0,¢+iB,¢ +iCuo (6.9)

where ‘B, was already introduced in at the time of localizing the
Galilean symmetry. Here C), is included to localize the scale transformation.
Similar to the case of Galilean transformations, the new derivatives ‘D,,’ do not
transform covariantly. A covariant transformation can be achieved in two steps,
as stated in the previous chapter. First, local coordinates will be considered at
every space-time point of the global coordinate system to enable a geometric
interpretation of the localization prescription. Next, local covariant derivatives
will be defined in the similar way,

Dot = %ot Dyoh (6.10)

where ‘(0,7 =1,2,3)" and ‘«(0,a = 1,2, 3)’ indicates the global and local coor-
dinate indices respectively.

Following the definitions [Eq. (6.9)} [Eq. (6.10)] it can be observed that the
covariant derivatives D transform covariantly in the following way,

50[),1(;5 = _508t<Da ) - Slaz(boﬁb) - imvixi(ba(b) - Wbaﬁb(b - imva(b

_ <3 N 3A> Do (6.11)
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provided the additional fields ‘B,,’, ‘C},” and ‘¥’ transform according to
5[)Bk = —gﬂﬁuBk - ak&uBu + m&kvixi + m(vk — Akava)
1
5()Ck = —5“8“6% — 8]€§'MC/J + iaks
502ak = _gua,uzak + 5ifk2ai - SEaIc - wbazbk
SoB; = —£"0, By — 0 By, + mYF AL v, + mi'a;
1
(500,5 = —5“8#0,5 — 8t§“CM + §8t(5 + )\)
600" = =19, 50" + 9,6°%,°
S0 0" = —€19,50" + 0,68 So" — AZoF + v E,* (6.12)

where £ = (e(t) — A(0)t), & = (n'(z,t) — tv'(x, t) + s(x, t)z"). Invariance of the
local action requires that the magnitude of time scaling parameter A be twice of
the space scaling parameter s. The inverse of the ‘32’ fields are defined as,

SalAY =08, S MNP =68 (6.13)

B,, are already expressed in terms of spin coefficients and generators in|Eq. (5.39
The fields C}, can be defined as,

C,, = Db, (6.14)

where D is the generator of scale transformations. We can now replace the partial
derivatives in the action [Eq. (3.11)[ with these local covariant derivatives to give,

£ (6,06, 0x9) = £' (¢, Dod, Dat))

Similar to the Galilean case we have to consider the change in the measure,

1 a «

Replacing the partial derivatives with the local covariant derivatives and consid-
ering the change in the measure, the Schrodinger action [Eq. (6.6)| modifies to,

. (1 NTi/, - N
S:/dt/ddm(zoodet/\k>[2 <¢ D0¢—¢D0¢>—%Daq§ Da¢]. (6.16)

Note that unlike in relativistic theories, the mass is not the coefficient of the
linear term in the potential here, but enters as a passive parameter in the kinetic
term since non-relativistic theories hold in the regime where the energies being
dealt with are far less than the (rest) mass. As such, massive scale invariant
non-relativistic theories can and do exist.
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6.3 Scale covariant Newton-Cartan geometry

As we have seen, the additional inclusion of scale invariance has led to a different
result following localization. First, the transformation properties of the gauge
fields that were introduced at the time of localization of the Galilean symmetry
were modified. Second, the localization procedure brought in additional gauge
fields that were required in order to render the action invariant. The gauge fields
reduce to those found in the localization of Galilean symmetry when the scale
parameter ‘s, A — 0’. We would thus expect a scale covariant geometry to emerge
upon identifying the vierbeins of the manifold. However, this geometric structure
should reduce to the NC geometry in the limit of vanishing scale parameters.

We begin by defining the inverse spatial metric as before,

RV = 3,5,V 69 (6.17)

The temporal one-form can also be defined in terms of the inverse vierbein field
AMO.
7o =MNC (A% =0,A0" #£0) (6.18)

With these definitions, [Eq. (6.12)[leads to the following variations of h*" and 7,
doht" = —=£PO,AM + hPY 0, + P07 — 2shM”

doTy = —Tuaofo — 50807'/1 + 257, (6.19)

To obtain a full geometric structure the connection will be introduced following
the vierbein postulate, which will also help to explore the metricity condition for
this geometry. The vierbein postulate is given as follows,

Vul? = 0,00 —T0, A" + B 50,7 + 2b,A,° = 0
V" = 00" — T6,A,% + B*5A° + by A" =0 (6.20)

where f’y)ﬂ is the scale covariant connection and b, is the scale gauge field defined
in[Eq. (6.14)l Using the fact that B, vanishes for Galilean transformations, we

get the following expression from the first equation of [Eq. (6.20)
O, —T0, A0 = V7, = —2b,7, (6.21)

From [Eq. (6.21)|it is evident that 7, does not satisfy the metricity conditions.

The metricity condition for h*” can similarly be derived from [Eq. (6.20)l From
[Eq. (6.13)[ and the second equation of [Eq. (6.20)|it can be shown that,

0uSa” = BplaSy” — b5 = —17,5," (6.22)

By contracting [Eq. (6.22)| by ¥,” and using the antisymmetric property of B,
we find that

Vuh?? = 0uh?7 + 10, h7 + T, h"* = 2b,h". (6.23)
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Explicitly taking b, — 0 in [Eq. (6.21)[ and [Eq. (6.23)| results in the well known
metricity conditions for NC geometry.

The respective inverses of the contravariant metric and temporal one-form will
be defined as,
hyp = A ALY (6.24)

and
P = ¥,”. (6.25)

Despite the non-metricity, both the orthogonality and projection relations are
satisfied by the scale covariant NC background.

M1, =0, h,t =0,

h“)‘hA,, =0 —1lr, T, =1 (6.26)

In the context of the covariant derivative, the explicit form of the connection can
be determined. This follows from the vierbein postulate by contracting [Eq. (6.20)|
with ¥, which gives the following general expression for the connection

0, = 0,0 Saf + B 450N, Saf + 20,0,50° + by A" S4” (6.27)
From the metricity condition of 7, [Eq. (6.21), we find the following relation

5
—E1, — 2by, T (6.28)

Ot} = —

where Tlf’# =T py is the torsion tensor of the scale covariant NC background.
Note that, for the NC background the temporal component of the torsion tensor
(T},7,) vanishes if dr = 0 which can be observed from In including
scale transformations the torsion tensor and its components acquire additional
constraints due to the inclusion of the dilatation gauge field b,. We can infer two
important facts from the relation First, due to the presence of the
scale term in T[f,ﬁp # 0 even while dr = 0. This distinguishes this
result from that of the NC background described above. The second implication
is that when T[fl,Tp = 0 we have the following condition

Oty = —2by, 7y (6.29)

This equation relates the gauge field connected with scale transformations and the
temporal one-form. In particular, still leads to the Frobenius condition
being satisfied, ensuring the existence of spatial hypersurfaces orthogonal to 7.
Backgrounds satisfying are known in the literature as the Twistless
Torsional NC background (TTNC) [30].

The above cases dealt with different consequences involving the temporal com-
ponent of the torsion tensor. In general, the spatial component always exists and
it will thus be useful to determine the general expression of the torsion tensor for
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the scale covariant NC background. From the vierbein postulate [Eq. (6.20), we
have

Y N

L™ 4 Bl g A 4 260,088 + b0, =0 (6.30)

Contracting with ¥, on both sides results in
o

TI/
T a[MT,,] + X (8[uAu] + B[#|5|A’j]ﬁ) + b[HTy]T + b[“(sy] = 2“ (6.31)

Manipulating the terms in the parenthesis one can write the general torsion tensor
as

o

= 70T + 2bmy 77
a a b a o a o
+ ((%Al,] + B[u|bAV] + b[MAu] > h7TA + K’y[VTu}h v (6.32)

where the first line represents the temporal contribution and the second line
includes the spatial contribution.

We can now express the connection in terms of the metrics and the gauge field
(by) defined earlier. Making use of [Eq. (6.27), the symmetric part of connection

can be written as,

~ 1 - ~ 1

e, = 5[1“5# +I7,] = 3 [(0,A°20” + 0,0, "S0”) + (0, A S0’ + 0, A, S0")
+ (BauOAuOEap + BauOAMOZaP) + (Ba,ubAVbZap + BaubAubEap)
+2(bu A S0” + by AL S0P) + (b Ee” + by AL 0] (6.33)

Using ¥,” = h??A,* (which follows from [Eq. (6.17)| [Eq. (6.18)] and [Eq. (6.25)]
the above expression will take the following form,

. 1 1

00, =109, + §h’”’ [0uhoy — A0, A + 5hf"’ 0o — A0, A, ]
1

+ §(B“0NA,,OEJ + B, A0 + B ALY + B yA L S, P)

1
+ 5(%55 + bu5z + b7, 4 by, T?) (6.34)

Since we are now considering the symmetric part of f”y’u, we have
[~ A0 A 0" — A0y A" = (=05l — B A" Ap® — B pA . A0
+ (bphov + byhoy — 2bshyy,) (6.35)

Plugging this expression in |[Eq. (6.34)[ the symmetric connection of the scale
covariant NC geometry can be written as

. 1
Iy, =71°0,m,) + §hf"’ (&hw + Ovhoy — aghw) + (bu8h + by6, — boh? hyy,)
+ RPAT LK) (6.36)
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where the two form K is defined in a similar way as stated in

1
hp/\T(MKV)/\ = §hp)‘[T”A)\aBaol, + TZ,A)\aBa()“] (6.37)

Defining ‘K’ in this way makes the connection unique. It is evident from
that in the limit of vanishing ‘b,’, the expression reduces to that of the NC
connection. For completeness, we note that in the presence of torsion
the general connection becomes,

~ 1
0%, = 70 0m) + 5h* (Outiow + Ohop = Dby ) + (608 + bu3f, — b huy)
+ hp)\’i'(u V)A + hp |: o — Lypo + TUVH} (638)

where Ty, = (hop + 7o7,) Ty and T,fu was defined in [Eq. (6.32)

Let us now consider the curvature terms and their properties, again only for the
symmetric connection (Tgy = 0). Our analysis will be considered in n spacetime
dimensions for the remainder of this chapter. For convenience, we will write the
symmetric connection of the scale covariant NC geometry in the following way,

00, =T%, + (bu68 + b,00, — by hyyy) (6.39)

where T, represents the usual symmetric NC connection. The Riemann tensor
for the symmetric connection in [Eq. (6.39)|is defined in the usual way,

V.,V JVA=R V° (6.40)

opuv

Upon expansion, we find the following result

R, = R 42V ()05 + 6)bs — hyjobsh®) + 257, (bybo — hujobpboh?)

ouy

+ 20,720 — 20,777 e by (6.41)

For the NC background T,\R’\UW = 0 allowed us to use Ry, = h ,\pRp ouv- Unlike

R)‘UW, R o do not satisfy the properties given in |Eq (5.8) |and |Eq (5.9) We
require 5“ R o = Rm,, which implies that one can lower the indices of R o
with the Combination (hyw + 747,) and raise with (h*” + 7#7%). Let us first

consider

Reo‘ulx = (hxe + T,\Te)RﬁW

= Reopw + 2(heo + 7eTo)V by + 2(hep V bo + 77,V 1b0)

— 2V, (hyjobe) + 2707V (B0 bs) + 2hefubube + 27eT,bube

— 2hefuhujoh by by — 27T, Ry B Pbyb, + 2beby b — 20,777y Ry

= 2b,7°71, 00 0 be + 277 T O b T T R 0 (6.42)
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We get the expression for the Ricci tensor Ry, by contracting [Eq. (6.42) with
(he# - rert)

Rov = Row + 2V15by) — Vou(huobch™) + (1 — 2)[bubs — Vb — hueh™b,b,)
— 1,V (1Pb,) + prTpT(ob,,) — (bp,m) (by T ) (T075) (6.43)
This is of course the same result one would get from [Eq. (6.41)| by setting ‘\ = u’.

Again contracting [Eq. (6.43)| with (h?” 4+ 777") the following expression of the
Ricci scalar is obtained,

R=R—h"V,b,(2n —3) — (T"V,(b,7") — T77Pb,b,)(n — 1)
+ (n — 2)b, ™V ,77 — (n — 2)?h7Pb,b, (6.44)

It is evident from the previous expressions[Eq. (6.42)HEq. (6.44)[that the Riemann
tensor, Ricci tensor and Ricci scalar are not invariant under the scale transforma-
tions and certain symmetries of the NC Riemann tensor are not satisfied by the
rescaled counterpart. For instance, reveals that the Ricci tensor is not
symmetric. If we require ]:Z[U,,] =R A = 0, this in turn determines conditions on
the ‘b,’ fields through which these symmetries are satisfied. In General Relativity
this simply leads to the condition that ‘b, = 0,a’, for some scalar field «. Here,
apart from this constraint the additional requirement of ‘b, 7,; = 0’ needs to be
satisfied. As can be noted in this will be satisfied when dr = 0 in the
TTNC background.

This motivates us to find an invariant tensor under the anisotropic scale trans-
formation. From [Eq. (6.41) we can construct the Weyl tensor C’\UW. It can be
observed that the Weyl tensor is invariant under non-relativistic scale transfor-
mations which implies,

c* L, = C)\ow, = R)\guy—i-Q(h)\[uSU]g—i—T)\T[“Sl,}J)—Q(hg[usy])\ﬁ-TgT[“Sw)\) (6.45)

ou
where Ry, is the NC Riemann tensor and Sy, defines the NC Schouten tensor,

1 1
vo — & ov T 57 1\ oV o'v '4
S n—2<R 2(n—1)R(h +7'T)> (6.46)

In general it may be useful to consider the symmetries of the rescaled Riemann
tensor without imposing additional conditions. This will be useful in the treat-
ment of non-ideal conformal fluids on curved backgrounds [58]. In the next chap-
ter we will consider the treatment of non-relativistic ideal fluids on the NC and
scale covariant NC background. We will briefly discuss the above point in the
context of scale invariant fluids.



Chapter 7

Non-relativistic fluids on
curved backgrounds

The aim of this chapter is to elaborate on an important application of the con-
struction of the previous chapter, namely, in the description of non-relativistic
fluids. Fields close to equilibrium admit a hydrodynamic description. Within
this description the stress tensor and symmetry currents are expressed in a gradi-
ent expansion of the fluid variables and the spacetime background. We will first
give a detailed description of ideal fluids on the NC background. Following this
we develop a Weyl-covariant formalism which simplifies the study of conformal
covariant non-relativistic hydrodynamics. In particular we will consider scale in-
variant fluids. In the last section we will investigate some consequences of scale
covariant backgrounds on the response functions of Hall fluids.

7.1 Fluids on the Newton-Cartan background

In the non-relativistic hydrodynamics regime, the basic fluid variables are the local
velocity v'(x) and mass density p(x), and they satisfy the following conservation
equations,

dip + 0i(pv') = 0 (Continuity equation)

Ai(pv?) + 9T =0 (Momentum conservation equation)

1 .
O (6 + 2pv2> + 0;7' =0 (Energy conservation equation) (7.1)

where T% | e and j* are the stress-energy tensor, energy density and matter current
of fluid respectively.

A preliminary study of non-relativistic fluids on the usual NC background
was performed in [25,55]. In this section we review some of the relevant prop-
erties of ideal non-relativistic fluids on the NC background. The description of

62
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non-relativistic fluids requires a choice of fluid velocity. For this purpose, let us
consider the fluid velocity u* such that

utr, =1 (7.2)

A sensible requirement is that the fluid has no acceleration and is irrotational
when considered with respect to the inertial frame of the NC background, i.e.

at =ufViut =0, M= hﬂ“nyu”} =0 (7.3)

where V' is the covariant derivative corresponding to the inertial piece of the NC
connection [Eq. (5.6). The total covariant derivative will act on the fluid velocity

uY as,
v !,V 1 VA 1 VA p !, v VA P
Vyu’ = Vyu” + ih K+ §h Kpmu? = Vu” + h" 7, K,)\u (7.4)

From |[Eq. (7.3) and [Eq. (7.4), it then follows that the fluid variables for the

expansion, acceleration, shear and vorticity for a general NC background can be
written as,

0 =V,u' = V;Lu“ =6

a’ =u'vVyu’ = h”)‘Kp,\up

0
o = V] = = = AT - i = o

w = [PV = W =0 (7.5)

Thus apart from the acceleration, all other quantities to describe the fluid are
invariant in going from an inertial to a non-inertial frame. In addition to these
quantities, the description of a fluid requires a definition of the stress energy
tensor and other matter currents of the theory. Since the NC background contains
two degenerate metrics (", 7,) and additional gauge fields (A, 7, A,), these
definitions should follow from a careful variation of the action. The most general
variation of the action, which leaves the connection invariant is given by

0= 65 = / VRd'al = Py Sh 4 QUom, + J*5A, + Ryort]  (76)

where P,,,, Q", J* and R, will be identified with the physical stress tensor, energy
current, mass conservation current and momentum current respectively. Two of
these variations correspond to non-gauge variables, i.e. dh*” and d7,, which are
the variations of the given inverse spatial metric and temporal 1-form. Setting
these variations to vanish provides the contributions from the pure gauge variables

A, and 7#. [Eq. (7.6)| then reduces to,

58 = / Vhd*z[J'SA, + R,o7"] (7.7)
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We can simplify [Eq. (7.7)| further by using the following properties of K,

Koy = —2h,pn V%, 5Ky, = 2V, 67" (7.8)
where we have used [Eq. (5.4)} Following [Eq. (5.10)(and [Eq. (7.8)[ we get,
0A, = hupdt? + 0ux (7.9)

where 0,,x represents the U(1) transformation of A,. Using the expression of §4,,

from the action simplifies to,
68 = / Vhd z[(J*hy, + Ry — (V ,J°)X] (7.10)
For arbitrary y, 677 = 0 gives,
V,JP =0 (7.11)

This is the equation for the conserved (matter) current in the theory. For arbitrary

d7? and x = 0 we have from [Eq. (7.10)
R, =—J"hy, (7.12)

This is the well known relation between the momentum and particle number
currents in non-relativistic theories. Considering the variation of the action under
diffeomorphisms one has,

1
0=465= /\/Ed‘lw[—QPngh“" + Q“££TM + J'ungM + Rung'u] (7.13)

where £¢ is the Lie derivative along some arbitrary vector field {#. After a bit

more calculation [Eq. (7.13)| gives,

0=06S = / Vhd*z &V, (=TH",) + 2TV, A,y + RV, 7] (7.14)
where
™, = P)pyht* + Q"1 — R, 7" (7.15)
and
Vu(TH,) = 2J"V, Ay + RV, 7" = J'K,, + RV, (7.16)

To provide the constitutive relations we will now describe the physical currents
of the theory in terms of fluid variables. For ideal fluids this involves the zeroth
order derivative expansion. Since J* is some mass flow, we can write

J! = piut (7.17)



7.1. Fluids on the Newton-Cartan background 65

where p; represents the conserved charge density. This choice is by no means
exhaustive and in a general derivative expansion for dissipative fluids there ex-
ist more terms involving the spatial metric. At zeroth order in the derivative

expansion we can also write [Eq. (7.16)[in the following form,
V. T", = phy,ya” (7.18)

We can now deduce the form of T#, for ideal fluids. At this order the unknown

coefficients P, , Q" and R, in [Eq. (7.15)| will not contain any derivatives of u*.
Hence T#, has the following general expression for ideal fluids

TF, = ah,,h"* + Bu”t, + yhyqu®u” (7.19)
By performing the following contractions of T*, with the expression of [Eq. (7.19)
R o, TH, = a +yuuPhas, T/7,TH, =8, u'1,T" =B+ yuu’hag,

we see that Q* and R, can be interpreted as the energy and momentum currents
respectively. This leads to the natural identification of § = € + % pucub hag as the
total energy of the fluid, v = —p to provide the momentum current and a = —P.
With these conventions for «, 8 and v we have

1
T, = (P +e+ ipuauﬁhaﬁ)u'uﬂ/ - P5ff - phuauawu (720)

The constitutive relation for an ideal fluid on the NC backgroundis
in agreement with the result of [51]. The stress tensor of the NC background,
as in all theories with z # 1, satisfies a deformed trace relation z7% + 7% = 0.
With the expression of we find that this trace provides the following
Equation of state when z = 2,

2% = (n—1)P (7.21)

Note that this is a fully classical treatment. If quantum fluids were considered
then this relation would follow from the ‘dilatation Ward identity’ associated with
the Lifshitz symmetry E

Note that [Eq. (7.20)| represents the physical stress tensor and is not valid
under Milne boosts. The velocity u* does not transform under the Milne trans-
formation as u* is considered as a physical field. We recall that the set of Milne
transformations that leave the (symmetric) connection invariant are

™ — H 4+ hE,

huw = Ty — 27,k + KOk hogTum |

1
Ay — Ay +k,— ikakﬁham, (7.22)

!This quantum relation is also known as ‘z-deformed trace’ [52] in the literature.
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where k£, is an arbitrary spatial vector, i.e. 7#k, = 0. Under the Milne transfor-

mations [Eq. (7.22)} the variation of is given by

STH = —gumhaﬂkakg + putle, (7.23)
There exist several ways in which Milne covariance can be assured. One approach
involves redefining T}’ such that

T+, =TH, — put A,

1
=(P+e+ §puo‘u5hag)u“ﬂ, — P& — putuPhg, — pulA, (7.24)

The stress tensor of is invariant under Milne boosts and agrees with the
expression of [59], where it was derived following the null reduction of a relativistic
ideal fluid. A more systematic approach to ensure Milne invariance of all fluid
relations to all orders involves the consideration of a Milne covariant formalism.
This procedure was first described in [51]. Given a Milne invariant velocity u”,
we define u, = hy,u” and u? = uyut. We can now replace the Milne variant
fields of the NC structure (hy, , 7 ,A,) with the new Milne invariant variables
(}NLW ,ut flu), where

7 2
hyw = by — uymy — w7y + U T, T,

1
—Tu’ (7.25)

A#:A#+u#—2

In this way, beginning with any theory on the NC background, we can transform
the variables into the new Milne invariant variables. This is particularly important
in the case of the NC background with torsion, since the connection in that case is
not simultaneously U(1) and Milne invariant. We will continue to work with the
original set of variables of the NC background, as they allow for a clear relation
to the scale covariant NC background to be considered next. In the resulting
equations, we can always transform to the Milne invariant expressions using the
transformations just described.

Another conservation equation we will be interested in involves the local entropy
current. It follows from the second law of thermodynamics as a derived notion.
The requirement that entropy should be non-decreasing during hydrodynamic
evolution can be expressed in a covariant way in terms of an entropy current
whose divergence is non-negative.

VuJE >0 (7.26)

In [Eq. (7.26)| the equality holds for ideal fluids. The entropy current J% can be
expressed as,

JE = s'ut (7.27)
where ‘s’’ is the entropy density of the fluid.
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7.2 Fluids on the scale covariant Newton-Cartan back-
ground

In this subsection, we first introduce a manifestly Weyl-covariant formalism
suited to the study of non-relativistic conformal incompressible fluids. An impor-
tant feature of incompressible fluids is that the Euler equations are invariant under
the scale transformation but not under the special conformal transformation [60].
Thus non-relativistic conformal incompressible fluids are only scale invariant, and
the formulation we present here would be relevant in their description on curved
backgrounds.

We assume that our system comprises of tensors Qg::: which have a definite

scale transformation, i.e. they obey Qg::: = ewSQg:::, where w is the scaling
weight under scale transformations. Correspondingly, we also have the covariant
derivative operator V which satisfies

%MV; = VoV 4 (060 4000 —bg B hyy )V — (b8l 4+, —bo b hpy )V (7.28)

where V, is the usual NC covariant derivative and b, is the scale gauge field of
the previous chapter. The fluid velocity on the scale covariant NC background
transforms as a* = e **u*, where z is the dynamical exponent. Given our con-
sideration of the NC background and our interest in the Schrédinger field in
particular, we will consider the case where z = 2. However, we will also indicate
the results which will follow for general z for many of the subsequent equations.
Our analysis will be carried out in d spatial dimensions.

Using the above definitions, we can now write the general expression for V,u"

Vuﬂ” — ¢ %8 [(1 _ Z)b“uV + VHUV + (baéz — bghmjhua) ua] (7.29)

With [Eq. (7.29)[and [Eq. (7.5)[we find that the expansion, acceleration, shear and
vorticity have the following transformations,

0=V,i" =e > [(d+2— 2)bu" + 0]
av = 11”%#&” = % (2 = 2)byutu” + a” — bghqu]
G = T g (1 )b M) + by |

G — = (2+2)s |:w"“’ +(1- z)b,\hA[“u”]} (7.30)

where 0, a”, " and w” are defined in [Eq. (7.5)]

The above set of equations motivate the introduction of a conformally invari-
ant covariant derivative ‘D’ such that for the tensor Qg::_‘ described above, the
derivative will act on it as,

DQj. = e DQ: (7.31)
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This leads to the following relation between D and v

D, =V, — wb, (7.32)

Note that the above covariant derivative is metric compatible.
D,h*" =0, Dy7, =0 (7.33)

For relativistic conformal ideal fluids, the conformal acceleration (u*D,u®) and
conformal expansion (D,u") are assumed to vanish, leading to an expression for
‘b, in terms of the acceleration and expansion. We can identify a similar relation
for the z = 2 non-relativistic case using the first two equations of The
requirements that u#D,u* = 0 and D, u* = 0 when z = 2 can easily be shown to
lead to the following relation

0w

b,LL - _77—’“ +

- (7.34)

w2
As can be seen from [Eq. (7.34)| the conformally invariant derivative is useful
in casting the variables and equations of non-relativistic fluid mechanics in a
manifestly conformal language. These derivatives also define a curvature tensor
through their commutator,

[Dy, DIV = R, VT — wF, V? (7.35)

where F),, = Vb, —V,b,, and R’\UW is as given in [Eq. (6.41)l Note that should
the usual symmetries of the Riemann tensor be assumed in [Eq. (6.41), the field
strength for the scale gauge field b, would necessarily vanish. This is in accordance
with the present subsection where the usual symmetries follow through our choice
of b, = 0,5. While inconsequential for the case of ideal fluids, F},, does affect the
derivative expansion and dissipative terms which result in non-ideal relativistic

fuids [58).

Let us now use this derivative to describe the conservation equations of ideal
fluids on the scale covariant NC background. For the stres tensor we consider

Eq. (7.18) and find that

DTy = pay (7.36)

provided T} has weight ‘d 4+ 2’ and satisfies 270y 4+ T%; = 0. It thus follows from
that the conformal weights of ‘P’ and ‘€’ are both ‘d + z’, while the
weight for ‘p’ is ‘d4 2 — 2. The acceleration ‘a,’ has the same weight as u? which
is ‘2z — 2’, with which ‘pa,’ has the expected weight of ‘d+ z’. These weights are
the Lifshitz generalization of familiar results for relativistic fluids.

Likewise for any current J! = p;u* we find that

D, =0 (7.37)
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when J! has the scaling weight of ‘(d+2)’. Thus all current densities p; have the

weight ‘d + 2 — 27, including the entropy current relevant to the thermodynamics
of the fluid.

We assume that our fluid is in local thermodynamic equilibrium in the neigh-
bourhood of any point of spacetime. Let us denote the entropy current density
as ‘s'’, the temperature as ‘T’ and the chemical potentials as ‘y‘’. The first law
of thermodynamics for this system can be written in terms of the conformally
invariant derivative as,

1 ,
Tu Dys = (nQ)u)‘DAP — Dy p; (7.38)

It can be noted that the weight of “I” is ‘2’ while that of ‘u’’ be ‘2z — 2’. For
ideal fluids, it follows from [Eq. (7.17){ and [Eq. (7.37)| that p‘uDyp; = 0. Like-
wise, shows that v”D, T} = 0, which establishes that wDyP = 0 on
substituting Thus the entropy density for an ideal fluid on the scale

covariant NC background satisfies the following relation

Tu*Dys’ =0 (7.39)

This implies that the ideal incompressible fluids on the scale covariant NC back-
ground satisfies the local second law of thermodynamics i.e. the motions of the
fluid conserve the entropy of the system and no heat flows in or out of the fluid
during its motion.

Having considered scale invariant ideal fluids in this subsection, we already noted
some key differences with the relations that result from relativistic backgrounds.
It will be essential to further consider the description of fluids at higher orders in
the derivative expansion. This can be carried out using the derivative provided
in and the field strength constructed from it along with
the Riemann tensor relations [Eq. (6.41) - [Eq. (6.44)] The main complication
involves the Riemann tensors, which despite admitting a Weyl tensor description,
require many more constraints than the usual relativistic construction. Further,
the Riemann tensor relations were determined in the absence of torsion. As noted
in the inclusion of torsion is particularly warranted in the case of the
scale covariant NC background.

7.3 Contributions of scale symmetry to the Hall Effect

In this section, we will be interested in the consequences of non-relativistic
anisotropic scale symmetry in describing Hall fluids. We will follow the proce-
dure described in [43] where the Hall viscosity and the Wen-Zee term are derived
using an effective hydrodynamic theory. The Hall viscosity results from the Berry
phase term in the effective action [43]. More specifically, it is the response to spa-
tial stress in the corresponding term of the stress energy tensor. The effective
field theory consists of the Schrédinger field minimally coupled to a background
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electromagnetic field A, and a “dynamical” statistical field a,. The inclusion
of the Chern Simons term involving the field a, follows from the need to study
perturbations about a mean field of a strongly coupled anyonic system. The sta-
tistical field term in effect fixes the statistics of the system to be either bosonic
or fermionic and enables the study of responses to the system. After the per-
turbation has been taken into account, one can then integrate out this field to
have the effective field theory description of the Hall fluid. In this context, the
field ® represents either a composite boson or a composite fermion, and since we
are interested in the consequences of curved backgrounds on the system, we will
investigate the former. We can use the result of to express the Chern
Simons Landau Ginzburg (CSLG) effective action of the Quantum Hall effect [42]
in the following way,

S— / dtd?evh BT“ (@(2)D,d(2)” — *(2) D, (x)) — %W(D#@(x))*wy@(x))
EMVA
8mg

—V(®*®) + a,Vyay (7.40)

where e is the Levi Civita tensor, and the covariant derivative on the curved
background ‘D)’ is,

D, =8, +ieA, +ia, +igB, +ig'C,
= Oy +ia, + iay, (7.41)

In ‘A, is the external electromagnetic field, ‘a,’ is the statistical gauge
field, ‘B, was introduced at the time of localization of the Galilean symmetry and
similarly ‘C,,’” for the scale transformation in Since we will integrate
out the statistical field a, before our final result, it will be useful to write the
covariant derivative as in the second equality of The hydrodynamic
version of is derived by expressing the complex field ® in polar variables
[43.61],

® = /pe'? (7.42)
where p is the matter density, p = ®*®. The transformation leads to
the following action,
S = /dtde\/ﬁ[pT“ (Oub + apy + ay) — ﬁh’“’ (Oud + oy + ay) (0,0 + o, + ay)

NN

1 15
T hMY,00,0 —V = a,V, 7.43
syl QupOup (p) + Smg ay] (7.43)

The response of the FQH state follows from the variations of the fields

p—p+op
A, — A, +68A,
ay, — ay, +day, (7.44)
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where the barred values represent the mean field values. The FQH state of the
electron corresponds to the superfluid state of the boson ®, where Au is com-
pletely cancelled by @,. Further, for the Hall fluid the average density, p, is
related to the fields flu as,

_ 1 0ii _ 1 Oiier —
p= %6 ”ViAj = —%6 ”Viaj (7.45)

where the filling fraction in |[Eq. (7.45)|is written in terms of the intrinsic orbital

spin ‘g’ through the relation v = %. With these considerations at hand, the
effective action [Eq. (7.43)| modifies to the following one, where we will retain

terms that are at most quadratic in variations and derivatives.

L= Vh|TM8,0 + da,)p + (8,0 + day, + da,)dp

ﬁh,uu N

€
m (Oub + by + 0a,) (0,0 + b, + day) + 8mg

da,Vyoay — V(p)
(7.46)

We can now introduce a field j# through a Hubbard-Stratonovich transformation
on the kinetic term of the action in to rewrite the action as,

L£L=vVh TH(OW0 + dovy)p + (0,0 + Sy + 6ay)op — (0,0 + oy + day )R j,

L T W W 7.47
+27ﬁ]u Jv — (p)+871'g Ap Vyoay|, ( )

In the absence of the vortex excitation, we can integrate out the phase variable 6

in [Eq. (7.47)| to find the following conservation equation,
u(VhJ*) = VRV . J* =0 (7.48)

where we have defined J# = §p# — j,h"". Given |[Eq. (7.48)| holds, we can further
express it as,

1
Bo— VA
Jh =V fy, (7.49)

where f) are the new hydrodynamic gauge variables. Clearly, J# remains invari-
ant under U(1) transformations of the field fy. By substituting this expression

for J* back in [Eq. (7.47), we find,

UUA

da,V,éax —V(p)
(7.50)

1 m €
_ A . .
L =vVh prHoay, + e Evyf,\(éau + day) + ?ﬁjuh’“’]y + 879



7.3. Contributions of scale symmetry to the Hall Effect 72

Integrating out da, and using the expression of da, from [Eq. (7.41)| we obtain
this effective theory for the Hall state on the scale invariant Newton-Cartan back-

ground upto the leading order in gauge fields,

/
£ =Vh |(gm"Bup + ' Cup) + (5" Budufr + 5= Cd )

+ertS A+ oe" A0 fr = SN D+ (T5L)

The first parenthesis inrepresents the Berry phase terms and the terms
in the second parenthesis are the Wen-Zee terms. The terms with coefficient ‘g’
have arisen due to the symmetries of Newton-Cartan background. The terms
involving ‘g’ are the contributions of additional scale symmetry. Our aim is
to study the response of the effective action to the time dependent
variation of spatial metric. This response receives contributions only from those
terms which are quadratic in variations of the spatial metric under the presence of
a constant magnetic field (p = const.). Hence only the Berry phase terms will be
relevant to study the contribution to the Hall viscosity through the stress tensor.
The Wen-Zee terms will change the flux due to the curved background in a time

independent manner.

We will consider the time dependent variations of the spatial metric and its inverse
about flat space, which we will label as 0h,,,(t) and 0h*”(t) respectively. In doing
so with [Eq. (7.51), we end up with the following contribution which is quadratic

in variations,
1 . 1 .
Ly = Sgp cand™3} (hpp0h™ ) + 19 OO 4 (7.52)

where the overdot implies the time derivative and ‘- - -’ denotes those terms other
than quadratic order, which have been neglected in Ly. Using|[Eq. (7.52), we find
the following correction to the stress tensor,

e = 11 (;eabaaﬂagahmh“ - ;eabaagahmgaﬁ”> +%Hat (0hH5hy) (7.53)

where we have denoted %’3 = 1y and % = 0y. In deriving [Eq. (7.53)| we made
use of the fact that €y, = 0. The term in the parenthesis of [Eq. (7.53)|is the Hall
component of the viscosity tensor, which justifies our notation for nyg. The second
term follows due to our consideration of the scale covariant NC background. In
involving the time derivative of the spatial metric variations this additional term
rescales the Hall fluid. We note that the spatial metric variations must also be
related to corresponding temporal variations of 7, so as to satisfy
As such, this term may also be viewed as an expansion of the Hall droplet which
results in order to preserve the scale invariance of the Newton-Cartan background.

Our analysis here was entirely classical. One can expect that quantum ef-
fects, especially one-loop effects, will be relevant in the description of Schrédinger
field theories and fluids on the NC background. The next chapter addresses this
topic through the derivation of the trace and diffeomorphism anomalies of the
Schrodinger field on the NC background.



Chapter 8

Newton-Cartan gravitational
anomalies of the Schrodinger

field

Anomalies are one loop effects which arise in the context of quantum fields
coupled to external gauge fields or gravitational backgrounds. They represent
the failure of classical conservation laws to hold at the quantum level. Classical
relativistic systems admit a stress-energy tensor, which is symmetric, traceless
and conserved. But in consideration of quantum fields the trace anomaly arises
when the quantum stress-energy tensor is not traceless and its failure to be con-
served results in the diffeomorphism anomaly. These anomalies have important
consequences in black holes physics and cosmology [62-68], as well as in the com-
putation of transport coefficients and response functions of condensed matter
systems [69-76]. In particular, the trace anomaly is known to be relevant in de-
scribing the RG flow of quantum field theories [77-81] and in particular has led
to a proof of the a-theorem in CFTs [82]. NC gravitational anomalies will also be
relevant for certain systems with boundaries. As the AdS/CFT correspondence
is expected to hold in the NR limit, the bulk anomalies in 2 + 1 dimensions are
expected to impose certain constraints on the nature of the dual field theory at
the boundary [83-86].

Gravitational anomalies can be calculated using several approaches. In the
following we will briefly discuss some of the most commonly used ones in the case
of relativistic backgrounds.

Path Integral derivation with Pauli- Villars regularization: The anomaly results
due to perturbations about a flat background g, = 1, + hyy, where 7, is the
flat Minkowski background and h,, denotes the perturbation. This is usually per-
formed within the Pauli-Villars scheme, which is known to result in the derivation
of consistent gravitational anomalies.

Heat kernel approach: Gravitational anomalies can also be derived from the trace
of the heat kernel [87,88]. Let us consider quantum fields with a mode expansion

73
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¢n, which satisfy ﬁqﬁn = A®n. The use of elliptic operators ensures that this
spectra is bounded. Then the heat kernel K (z,y;s) is given by

K(z,y;5) = (z]e™|y) (8.1)

where s is the coefficient for the operator L which ensures that the exponent in
Eq. is dimensionless. The heat kernel satisfies the following heat equation

(05 + LYK (z,y;s) =0 (8.2)

For the Laplacian operator in flat space this kernel is known exactly. In curved
space, we can approximate the full expression through a perturbation in s. In
this way the heat trace can be expressed as,

K(z,z;8) = <ao(ﬁ) +as(L)s + as(L)s® + - ) (8.3)

g3+l
where ‘d’ represents the spatial dimensions and a; are the anomaly coefficients.
Depending on the degree of the operator L and the dimensions of the spaceitme,
one of these coefficients will represent the anomaly. It is also implicitly assumed
in [Eq. (8.3)[that L has an even mass dimension due to which all the coefficients
a; are even.

Fujikawa’s approach: Anomalies can also be seen as the failure of the measure
of the path integral to remain invariant under the given symmetry transforma-
tion. The functional trace of the Jacobian for gravitational anomalies requires the
choice of regulator and basis. One such choice involves the plane wave approach
of [89,/90]. This approach leads to the correct result for the relativistic trace, chi-
ral and diffeomorphism anomalies. The regulator was introduced in [91], which
was further shown to be equivalent to Pauli-Villars regularization in [92].

The symmetric stress tensor of the Schrodinger field on the Newton-Cartan
background can possess three possible gravitational anomalies. These are the
diffeomorphism, trace and the gravitational U(1) anomalies. The gauge field
Aﬂ is contained in the NC connection due to which the U(1) anomaly is also a
gravitational anomaly. The path integral and heat kernel approaches described
above are effective in the relativistic case since calculations only involve the per-
tubed metric h,,. In constrast, the NC background involves perturbations of
the fields h*,7,,7" and A,, leading to a substantially more involved calcula-
tion. Further, NC anomalies derived thus far in the literature all concern the
trace anomaly, where variations of A, were not considered. Beginning with [93],
the trace anomaly was described as those terms in the general Weyl variation
which satisfy the Wess-Zumino consistency condition. In [94], following the null
background construction of [39], the anomaly was shown to be present in the
same number of dimensions as relativistic theories. In [95], the trace anomaly
was demonstrated to arise in odd dimensions, following the embedding of the NC

I This field is related to the field BZO considered in
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background in a relativistic background of one dimension higher [27]. In this chap-
ter, we will review the derivation of the NC trace and diffeomorphism anomalies
following Fujikawa’s approach, where all variations of the Newton-Cartan fields
are taken into account.

8.1 Fujikawa’s approach and Regulators

Fujikawa’s approach :

We will consider the action S[V¥,G] which is invariant under certain linear
transformations of the fields

08 08
08 = =6V + —0iG =0, 8.4
su’? T 56%Y 8.4)
where ¥ are the matter fields, G = {h*", 7#,7,, A, } are the background (gravita-
tional) fields for the NC background and % is the densitized energy-momentum
tensor. For the on-shell equations of motion of ¥, the first term on the right hand
side of vanishes, while the second term provides the classical conserva-
tion equation of the energy-momentum tensor
oS
—30G=0. 8.5
o (55
Eq. (8.5)| can represent either the Weyl or diffeomorphism transformations in the
context of this chapter. The quantum theory is described by the path integral

7 = / DY9l (8.6)

The path integral is invariant under a given symmetry transformation of ¥ pro-
vided

/ DY SV 9] = / DSVl (8.7)

We will be interested in infinitesimal transformations, under which the left hand

side of can be expressed as

/qulez‘s[\Iﬂ,g] _ /D\I/ Iei(s[‘lﬁg}"‘%é‘l’) , (8.8)

where Z refers to the functional Jacobian in going from ¥ to ¥’'. The effect of
infinitessimal changes to the Jacobian and the action will provide the anomalous
Ward identity. The infinitesimal change in the action is given by

5
[V, G] = S|, d] + £w
_ spw,6) - 2550 (8.9)

0G
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where in going from the first to the second line of we made use of
We also have the unitary transformation of the field ¥, which can be
written as

V=00 =¢c"v, (8.10)

where J is the Jacobian of the transformation. Using [Eq. (8.9) and [Eq. (8.10)|in
Eq. now leads to the anomalous Ward identity

<§§5§>\p =(TrJ)y, (8.11)
where (---); denotes the path integral average with respect to the variable V.
Thus the classical conservation equation is violated and results in an anomaly
which is given by the functional trace of the Jacobian. This trace is ill-defined
due to the presence of §(0) and requires regularization. As first demonstrated
by Fujikawa [96], one can regulate using a positive definite operator R in the
following way

R R(z)

An = lim Tr [JeMZ} = lim dnm/dnyJ(%y)e w2 oMz —y),  (8.12)
M —o0 M—o0

where the mode expansion for the functional trace in the last equality has been

made for a scalar field. M? represents a mass parameter meant to make the

exponent in [Eq. (8.12)] dimensionless. Its purpose in the regulated trace is to
eliminate the UV divergences, thereby leading to a finite result for the anomaly

in the limit M — oo. In|[Eq. (8.12)| the true anomaly comprise only those terms
for which a counterterm in the action cannot be provided.

Regulators: Pauli-Villars (PV) regularization can be used to infer the Jacobian

(J) and Regulator (R) of [Eq. (8.12) [90]. Let us consider the following action
involving a collection of quantum fields ¥

Ly = %xpTTpr, (8.13)

where we assume that O is any symmetric operator of mass dimension 2. The
superscript T denotes transposition, while T is a symmetric matrix which in

general depends on the background fields. [Eq. (8.13)|is invariant under a certain
infinitesimal symmetry transformation which we denote as

5l = K. (8.14)

where K is the generator of the corresponding transformation.

In order to regularize the action we introduce the PV fields x. These are
massive fields with the same statistics as ¥, but with a different path integral
definition to introduce a minus sign in one-loop graphs. Thus the Lagrangian is

Lpy Zﬁx—i-,CM

1 1
= 5XTTQX + §M2XTTX, (8.15)
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where M? in the second term is due to Q in [Eq. (8.13)| being a mass dimension
2 operator. The path integral for y is defined as

/ Dye’X AX = (det A)2 (8.16)
The invariance of [Eq. (8.13)|is now extended to the massless part of the PV action

drx = Kx, (8.17)

such that the violation of symmetries, if any, can only arise due to the mass
term. Under the transformation [Eq. (8.17)[ the mass term of the PV Lagrangian

becomes )
Ok Ly =0k Lpy = §M2XT (TK + KTT + 6T) x . (8.18)

[Eq. (8.18)| can now be used to compute the anomaly due to the PV regulated
path integral

Ang = — lim Tr BW (TK + K'T + 0T) (TM?* + TQ)_l]

M—oo
1 o\ !
<K+ 5T 15T> <1 - M2) ] , (8.19)

where we could replace KTT with TK since T and TQ are symmetric. From
[Eq. (8.12)| and [Eq. (8.19), we can identify the Jacobian and the regulator to be
used in Fujikawa’s approach as

= — lim Tr
M—oo

1
J=K+ §T—15T, R=0Q (8.20)

8.2 Fujikawa regulators for non-relativistic field theo-
ries

While the comparison of PV regularization with that of the regulated trace in
Fujikawa’s approach has led to one aspect of the calculation in the PV
scheme is not faithfully represented for non-relativistic systems. This concerns the
domain of integration of w in a non-relativistic one-loop calculation. Specifically,
we will now argue that the correct regulated trace to be used in the Fujikawa
approach for non-relativistic theories should be

oo

R
2

| Tde PR iy e
e / a2t ¢ (e
0 —00

] eiwteike, (8.21)

2Strictly speaking, we can have dx/x = K’y, but in this case K’ must be such that the Jacobians
of the fields x and ¥ cancel out. Here for simplicity, we have referred to K’ as K.
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We recall that while one-loop effects in relativistic field theories involve pair
creation and annhilation processes, vaccuum polarization effects, charge renor-
malization and mass renormalization, such processes are absent at one-loop for
non-relativistic field theories [37,97]. The reason for this is that we can either
have the forward time or the retarded time propagator. To understand what
happens in the non-relativistic case let us first consider the Schrédinger field in
2 4+ 1 dimensions. Its mode expansion in terms of non-relativistic plane waves is
given by

(ID({L') ~ eiwtfikx

(b*(l,) ~ e—iwt—l—ik(ﬂ (822)
Noting [Eq. (8.21)] we now want to determine what should be the range of the
w integral due to the action of R on ®. While we do not have access to the full
Schrodinger propagator on curved backgrounds, it will suffice to consider the flat

space operator to determine the nature of the w integral. Taking R = i0; + %2,
the propagator G(x,t) satisfies

2
(z’@t + V;) Gz, 2’5t t)) = 6(t —t')0%(x — 2'), (8.23)

With 2/ = 0 and ¢’ = 0 for simplicity, we can use the Fourier transform to express
the propagator as the following integral

2 d2k ezwt ikx
e / o -

This integral can be evaluated by choosing a pole either in the upper half plane
(w > 0) or the lower half plane (w < 0). This freedom allows us to choose either
the forward or retarded propagator. Given and the usual choice of the
forward propagator for particles, this requires choosing the pole in the upper half

plane
7 d2 k wt—ikx
S 52)

We can now readily integrate to find

Glast) = —@f) % (8.26)

The above calculation is what is involved in but is not explicitly
considered in We will always consider the forward propagator for
particles. Thus we could have performed the integration over w in
from 0 to oo without affecting the result. As the Fujikawa approach is meant to
convey a one-loop calculation with this propagator for particles, we will perform
our calculation in Fujikawa’s approach with the regulator provided in [Eq. (8.21)]



8.3. The Schrodinger field on the Newton-Cartan background 79

8.3 The Schrodinger field on the Newton-Cartan back-
ground

The Schrédinger field on the NC background in 2+ 1 dimensions [7},8,126] can be
written aEEL

S = / dtd’zVhe
= / dtd*zv/h [im (®*7#D,® — &7#D,®*) — KD, 8D, ®"] , (8.27)

where D, = V,, —imA,, 73“ =V, +imA, and V, represents the usual covari-
ant derivative of the spacetime. The covariant measure for the action is given
by \/hu + 1T, = T“TH\/E = +/h, which follows from |Eq. (5.3)| and |Eq. (5.4)l
The gauge field A, is a mass generating field which provides particle number
conservation on the NC background. It is also the same field which appears in
the NC connection and is therefore on the same footing as all other gravitational
fields. In addition, the action is known to be invariant under Milne
boosts [7]. It will be useful to define the Milne invariant quantities

ot =71 — A, =TH — AP
1
Y=1"A, — ih’“’AﬂAy
(8.28)

We also define 0 = h*”9,. Note that in m is merely a passive
parameter with no mass dimension |97]. By dimensional analysis we see that ®,
®*, W9, and h*VA, each have mass dimension 1, while 7#A, and 70, each
have mass dimension 2. Since we are interested in understanding the symmetries

of |[Eq. (8.27)] let us first consider its total variation
55 = / dtd2eN [~ Pl + Ry67i — JUSA, + 50*Dd + 60DD*] |, (8.29)
where we have defined
1 _
Py = ShyuL + D, %D, e°
R, =im (®*D,® — D, %)
JH = —2m2 0P " + im (P*OHD — DOHD*)

DO = (2im7"D, + imV " + W'D, D,) ®
DO* = (—2im7"D,, — imV, 7" + h*'D,D,) ®* (8.30)

3The action here differs from that of the previous section by a factor of 2m. We are free to perform
this rescaling as m is a passive parameter in NRFTs and do not involve corrections in loop processes
(no mass renormalization; particle number is conserved,etc.)
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We note again that variations of dh,, are not independent of 47# and hence
do not appear in Let us now consider the variations to be the Lie
derivative with respect to some arbitrary vector field ¥, ie. &g = L¢. It is
straightforward to demonstrate that 6¢S = 0 and hence is invariant
under diffeomorphisms.

We further consider the on-shell symmetries of the action
0= 5&5 = /dtd2l‘\/ﬁ[—Pw,£§hMV + RuffTM — J’ungu]
1
= /dtd2x2\/E§”[—VMT“V - JEV Ay + §RMVVT“] (8.31)

Here T*, is the stress tensor of the Schrodinger field on the NC background,
which is defined as

1
T, = Pygyh™ = SR,7". (8.32)

Thus [Eq. (8.27)| remains invariant under on-shell diffeomorphisms provided the
stress tensor satisfies

1
ViT"y + TV Ay = SRV, = 0. (8.33)

The action [Eq. (8.27)|is not Weyl invariant and cannot be used to investigate the
Weyl anomaly. However, in 2 + 1 dimensions we can construct a Weyl-invariant
action from by replacing the scalar fields with scalar densities. This
trick is known to work for relativistic scalar fields in 1 4+ 1 dimensions, where the
densitized fields are known as Fujikawa variables. We will now demonstrate that

this substitution also works for (Eq. (8.27))).
By substituting ® = $h~1 and & = *h~7 in (Eq. (8.27)]), we have

S = / dtd®zvVhL
- / dtd?a/h [imh ™% (& 74D, (®h %) - BrMD,(&*h 1))
—hM”Du(éh—%)@y@*h—%)] (8.34)

The fundamental fields of ‘Eq. (8.34)| are now {&),&)*,Au,h"”ﬂ'“}. The total
variation of the action [Eq. (8.34)in this case can be expressed as

58 = / dtd*s |~ B 0h + Ror+ — J'5A, + 65" RE + 50 (R%)] (8.35)
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with

Vh
2

Ry, = imhi (3D, (Bh%) — 5D, (&*h 1))

Poy = Y21 £ + VAD,(Bh~1)D, (B h 1) — ih,w (3RS + B(RE)")

Tt = 2m2 "+ imhs (B (BhTH) — BOM(Bh))

17 ~

R® = (WADh™H) & = [BF (2imrDy, + imV, o + WD, D,) h 5| &

(8.36)

We now find that [Eq. (8.35) vanishes under
SA® = AD, 540" = AD*, (8.37)
AR = =2ARHY | opTH = —2ATH. (8.38)

Thus the action [Eq. (8.34)|is invariant under Weyl transformations. Considering
the on-shell invariance of [Eq. (8.34)[under Weyl transformations (& = 0 = 69*),
we find

0=0,5 = / dtd*xN'h]— P, 00Ah™ + R,00T"]
= / dtd?xVh2A[TH ], (8.39)

where .
~ = _1 _1\ = = D A
Tuu:_i(q) (h iDh 4><1>+<1><h 1Dh 4)<I> ). (8.40)

We have denoted (270 + T%;) as T“u in the above equations. It is evident from

that the on-shell Weyl invariance of [Eq. (8.34)|can be restored provided

™, =0. (8.41)

We have thus demonstrated that the 2 4+ 1 dimensional Schrodinger field on
the Newton-Cartan background can be used to investigate its invariance under
both diffeomorphisms and Weyl transformations (the latter by densitizing the
Schrodinger fields). This will be particularly useful in investigating both trace
and diffeomorphism anomalies in the following section.

8.4 Derivation of the gravitational anomalies

Relativistic gravitational anomalies using Fujikawa’s approach can be calculated
in a covariant notation in a local plane wave basis. In the NR case, we do



8.4. Derivation of the gravitational anomalies 82

need to distinguish between time and space in both the regulator as well as the
plane waves. We thus need to make use of a specific set of coordinates in our
calculation. The adapted coordinates [19] provides a faithful representation of
the NC structure (in the absence of torsion). Let Greek indices p, v, -+ denote
spacetime coordinates, Latin indices 4,7, -- denote spatial coordinates and 0
represent the coordinate for time. Then the NC system of equations for the
metric can be realized through the following choice

n=1=7", 7=0, A%=0 (8.42)

Eq. (8.42)|represents our choice of time. The normalization of 7, [Eq. (5.3)|allows
us to make the choice given in [Eq. (8.42)l Since A, is a gauge field, it is naturally

left unspecified. The adapted coordinate system may not be appropriate in the
presence of torsion as 7; in general cannot vanish. In adapted coordinates v* and

¥ in can be decomposed into temporal and spatial parts,
W =710 vt =7" — AU A;
v=0+0¢
- , 1. ..
¢ = TOA(), qZS = TZAZ' - §hlJAiAj (843)

where v°, v¥, ¢ and ¢ are Milne invariant quantities.Using|[Eq. (5.6)|and [Eq. (8.42)|
we have the following non-vanishing components for the connection

é'k = {jk} ,

0j =5 (Oihwo + Qohij — Oihoj + O Aj = 0;Ax) - Loy = —5-Oohi,
00 = 5~ (200fk0 — dihoo) + W™ (kg — Do Ay) (8.44)

where {]Zk} represents the “Christoffel” component of the connection for the spa-

tial metric (the second term of[Eq. (5.6)). Notably hg, need not vanish in adapted
coordinates, and therefore 7¢ can exist. Using [Eq. (5.4) and [Eq. (8.42)| we find
that h,, and 7/ satisfy the following relations

hij/ = —hio, 7' =—h"hjo,

hoo = —h(]jTj = TihijTj. (8.45)

It can now be seen that the mass dimension of the connection components in
are not the same. The first line of has mass dimension 1,
the second line has mass dimension 2, while the last line has mass dimension
3. This reflects the z = 2 invariance of the background. However, Ricci and
Riemann tensor components have a uniform mass dimension as a consequence.
For instance ' ]

Roo =T — Do+ TiT00 — To;T0i s (8.46)
has mass dimension 4, while R;; has mass dimension 2. In the following subsec-
tion we will derive the trace and diffeomorphism anomalies using this coordinate
system.
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8.4.1 The trace anomaly

To derive the trace anomaly, we consider the action in (Eq. (8.34))), which can be
expressed as

S = / dtd?z®* QP
- / dtd>zd* (h%Dh—i> 3, (8.47)

where ® and ®* are the fundamental fields and D is the Hermitian operator

present in [Eq. (8.30)l The path integral is given by

Using [Eq. (8.37)) we find that the invariance of [Eq. (8.48)| under Weyl transfor-

mations of the fields ® and ®* results in the following anomalous Ward identity
(AVRTY,) = (Tr])g5. . (8.49)

where (---)z5. denotes the path integral average with respect to the variables ®

and ®*. To proceed, we regulate the trace occurring in [Eq. (8.49

(Tr)z5. — A}lgloo TrJew? . (8.50)

The Jacobian and the regulator to be used can be determined by comparing

Eq. (8.47) with The regulator to be used can be identified from
Eq_(8:30) o

R =hiDh™ 1, (8.51)
and we have J = A(z) (since T is a constant). The regulated trace which needs
to be evaluated is now given by

R

hm TrA(z)em? = lim

_zwt zkm [A(l‘)B%] eiwte—ikx . (852)

Due to the use of flat space non-relativistic plane waves, we expand R in the basis
of the adapted coordinates,

R =hi [2imv08t + 2imuid; + hid (aiaj - rﬁgak) - z'mc} hi, (8.53)
where 0; = % and C is given by
C=-Viv'+2im(d+¢) . (8.54)

We can now move the plane wave from the right of the regulator in to
the left. By further rescaling ¥ — Mk and w — M?w we have

R 4 d2 R(IVIk M2w)
11m TrA(zx)em? = lim M / / oM (8.55)

M—o0
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where the operator in the exponent now takes the form

R(Mk, M? 1 4 : ; 4
(AZZw)::—k2—2nnpw+—A{(HQFZ—2#%8”+2nwmﬂ——%him8%hin
+ (A —imC + hTART + 2hial(h*i)al) .
(8.56)
In [Eq. (8.56)| we have used the following definitions,
' =nmTe,,  k* = kik;h'
A= aiaj —T79; + 2im0v°d; + 2imv'0; . (8.57)
0 R(ME,M?w)
At this stage we can factor out e 2"V % from e M2 since it is a constant

(v’ = 1 in adapted coordinates). Following this, the w integral can be easily

evaluated
[ee)

dw 90 1
/ Mgmmo = L (8.58)

4dmm
0

Concerning the k integral, we need to use the BCH expansion to factor out ek
R(Mk,M3w)

from e M2 . By labelling A = —k? and B as the M dependent terms of

R(Mk,M2w) .

——7z — » We can write

where FE is given by
(A, B] | [A A Bl | [B,[AB]] _[A[B,[A Bll]  [A[A[A Bl

E=B-"—=—+ "=+t 1 -~ 24 B 24
[A[A,[A [A, B]]] | [A[A[B,[A,B]ll] [A[B,[B,[A, Bl
120 120 240
[B[A,[B,[A,Bll]] [BIB,[B,[A Bl  [B[AI[A,[A Bl
180 720 240

(8.60)

The ellipsis in[Eq. (8.60)|refers to the fifth order onward terms in BCH expansion.
The commutators in [Eq. (8.60)|contain all contributions up to M ~4 resulting from
the BCH expansion, and their expressions have been provided in
From we see that all terms with even powers of M ! contain an even
number of k’s, and likewise all terms with odd powers of M ~! contain an odd
number of k’s. This property will hold to all orders in the BCH expansion.

Since E contains M ! terms, we expand [Eq. (8.59)|up to fourth order

E? E? E*
eAB = A <1+E+2+3|+4!> +O(E). (8.61)

Eq. (8.61)|now contains all terms up to M ~% which can contribute to the anomaly.
We can now ignore all terms with free derivatives, as they cannot contribute to
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the anomaly. It will alslo be useful to separate those terms which do contain
derivatives acting on A~ 4, from those that do not. We thus write [Eq. (8.61) as

E? E3 FE*
eATB = e <1+E+2+3,+4|>+0(E5)

B B B B 1
A 1 2 3 4 _1 -5
=~ e (1+M+]\42+]\43+]\44+H(h 4)+O<M )) (8.62)
The ~ symbol in [Eq. (8.62)| indicates that we have dropped all terms with free
derivatives. H(h™1) contains all terms with O(h_i), with powers up to M ~4. The
BB; represent the order M —* contributions to the anomaly (which do not contain
8(h7i)) . With [Eq. (8.62) we have the following expression
R(Mk,M2w) 5 2 By Bo Bs By 1

(SO o, (1+M+M2+M3+M4+H(h H), 63
which will be needed to evaluate the integrals. Upon substituting and
[Eq. (8.58)|in [Eq. (8.55) we get

lim TI“A({L‘)€%
M—o00

1 d2k _ 1.2 81 BQ Bg 84 _1
= lim M*— [ —SA Pll+ = +-S+-5+-7
m M | e ( Tt T tap PR
(8.64)

Eq. (8.64) can now be evaluated via the following Gaussian integrals
1
/ ke = Vhr, / ke F kil = 5 Vhhi;
1
/ko €_k2 /{ik‘jk‘mk‘n = Z\/Eﬂ (hijhmn + himhnj + hmhmj)

1
—Vhr ((2n — 1)!! permutations of hjj; - - - hap—12,) -

/d2k€_k2 klk] Ce an—lkZH = on
(8.65)

The ‘k integrals’ vanish under symmetric integration whenever there are an odd
number of k’s in the integrand. Thus By and B3 vanish following symmetric
integration. ’H(h_%) also vanishes following symmetric integration, which could
have been anticipated following the cyclicity of trace EL The integral

B
/ d2ke ¥ <1 + Mé) , (8.66)

is non-vanishing. These terms however can be eliminated by regularization, and
do not contribute in the final expression for the anomaly. For example, within
the Pauli-Villars scheme one can include additional copies of the PV fields with

4The cyclicity of trace works here because the Jacobian does not involve any free derivatives.
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coefficients chosen so as to cancel out these M dependent terms. Thus these
terms can be ignored as well. Since the integral of By is somewhat instructive,
we have provided the terms contained in its integrand in using which
we have the following result

B 1 .
/d2k 22 =V <6Rijh” +2m2¢> . (8.67)
The only contribution to the anomaly comes from the term By, and [Eq. (8.64)
reduces to
lim TrA(z)en? = )e By (8.68)
M—+o0

The individual terms contained in B4 have been prov1ded in [Eq. (8.103), and the
resulting k integral works out to give

/d2k7€_k284 = \/>7T (180( Z]mnRijmn — Rinij + DRijhij)

2 ..
+omie? + m?(quijhw + ROOTOTO)> . (8.69)

Substituting [Eq. (8.69) in [Eq. (8.68)l we get the following expression for the
candidate anomaly,
x _ VhA(z)

i Toh(a)eie = e

( 20 (RijmnR7™ — Ri;RY + OR;;hY)
m2 ..
+2m*p? + ?(¢Rijh” + R00v0v0)> (8.70)

While the calculation leading to this result is considerably involved, we note
the following points related to the derivation and the above result. The term
Roov°v? results due to both the single derivative operator d; and imC contained
in following the BCH expansion. If A, were absent in our derivation,
then so too would all the terms in the second line of providing only the
curvature squared results already noted in the literature. The choice of 7, = (1,0)
and the absence of h% in adapted coordinates affects the expressions of C, the
Ricci and Riemann tensors, as well as the final result. The absence of terms
involving 7° and by extension v’ in the final answer is thus a coordinate artifact
which reflects our choice of time for the hypersurface. Remarkably, all imaginary
terms cancel out in the calculation leading to Both these points may
also be noted to be the case with

We can now determine which right hand side terms of represent the
true anomaly. A local counterterm involving (R;;h%)? can be included in the
effective action to eliminate the term DRijhij, and hence is also not part of the
result. Further, since (RijmnRijm” — Rinij ) is constructed out of the 2d spatial
metric, we can use Rjjmn = %(Rijhij) (himhjn — hinhjm) to write

» 1 »
Rijun R = RyyRY = 3 (Ri;h)? . (8.71)
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Note that is valid for NC backgrounds which satisfy the Frobenius
condition. The terms 2m*¢? and ¢R;;h notably violate U(1) invariance. This
can in principle be allowed since there can exist ‘U(1) gravitational anomalies’.
This follows from the U(1) invariance of the action as well as the field ® having a
U(1) transformation. For relativistic theories with both gauge and gravitational
fields in 4 dimensions, U(1) violating terms in the diffeomorphism anomaly arise
and the gauge current is also anomalous (and is related to the Pontryagin density).
However, one can find a counterterm to make the gauge current anomaly free,
which in turn leads to the diffeomorphism anomaly being U(1) invariant. Thus a
situation similar to that of mixed gravitational anomalies in relativistic theories
may arise here. Here however, the anomalous current (J#) is also a gravitational
anomaly due to its presence in the connection. Thus provides the
following expression for the trace anomaly

VhA(z) [ 1
Any = ——= (360

2
72 4,2 M ij 0.0
m(4m)2 (Righ)” +2m"¢ T3 (¢pRi;h" + Roov™v )) . (8.72)

Using [Eq. (8.72)| and [Eq. (8.50)| we can now write the covariant result as

T T 1 1 v m2 v v
<2T00 +T z> = m(dn)? (W(Rwh# )? + 2m*p® + ?(wah“ + Ryvfv )>
(8.73)

We note that this covariant result has been inferred from the result by correcting
for our choice of coordinates discussed earlier (the choice of 7, = (1,0,0,0) and
h% = 0) and by requiring that the result should be Milne invariant. The result

in [Eq. (8.72)[ as well as the regulator in [Eq. (8.53)| were Milne invariant (within

adapted coordinates). Further, since ‘Milne gravitational anomalies’ do not existﬂ
we seek a Milne invariant expression [Eq. (8.73)]

We note that our calculation demonstrates that the trace anomaly only arises in
odd dimensions. Since z = 2 and all BCH expansion terms involve an even(odd)
number of k’s for terms with an even(odd) power of M~!, the anomalies can
only occur when there are an even number of spatial dimensions. Thus NC trace
anomalies always arise in odd spacetime dimensions. Our result concerns NC
backgrounds without torsion. In the general case we would have instead,

. - 1 _ _
Rijmn RI™ = Rij RY = S (—Eq + 3C?) (8.74)

where E,; and C? represent the four dimensional Euler density and the square of
the Weyl tensor respectively as follows,

Ey = RyuypoR*™P" — AR, R"™ + R?,

1
C? = Ryuypo R*?7 — 2R, R" + gR2 : (8.75)

5As the field ® does not transform under Milne transformations, there can be no corresponding
anomaly even though the action itself is Milne invariant
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while the overbar implies that these tensors are contracted only with the (two

dimensional) spatial metric h®®. The general result, following [Eq. (8.73)], will
then be modified to

~0 1 1 _ _ 2
270 +T%,) = —— (== (=E1 4 3C%) + 2m*¢® + S (YR W™ + Ruvte”)
m(4m)2 \ 360 3
+ additional terms. (8.76)

This result, apart from the 7# and A* dependent terms is in agreement with the
results provided in [93}95]. The coefficients of the curvature squared terms are in
addition identical to those derived using the heat kernel approach of [98].

8.4.2 The diffeomorphism anomaly

The diffeomorphism anomaly can be computed from using the proce-
dure of the previous subsection. The fundamental fields are now ® and ®* with
the following action

S = / dtd*z®d*Vh D
= / dtd?z®*T QP . (8.77)
The path integral in this case is given by,

Z = / DODP* PP A (8.78)

Using |[Eq. (8.31)} the invariance of [Eq. (8.78) under 6® = £¢® and §®* = £, "

results in the following anomalous Ward identity

1
<—\/ﬁ£“ <V,,T”u + J'V Ay — 2R,,Vu7"’> ><1>q> = (TrJ) g - (8.79)
From [Eq. (8.20)| we choose R = D, which ensures that it is symmetricﬂ In this
case T = v h, and hence the Jacobian to be considered is,

1
J =9, + ——£eVh
§0ut SRt

g, + %1/55#3“@ Y (8.80)

Thus the regulated trace takes the following form

R
lim TrJem2
M —o00

1 dw d2k —iwt tkx m fuaﬂ\/ﬁ m % iwt  —ikx
i [ f e S ) 8] e

®By symmetric we mean that [ ®*D® = [ D"
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Evaluating this expression would formally result in considering an expansion up
to M 6. In taking the plane wave (e™!e~%7) to the left, it gets acted upon by
both the Jacobian and the regulator. The action of the Jacobian on e™! now
produces the term i¢%w . By rescaling w — M?w, we end up with a factor of M
outside the above integral, requiring a BCH expansion up to M ~% for determining

the anomaly.

However, having chosen a symmetric regulator we can avoid this cumbersome
calculation. First, we note the following identity which holds for any symmetric
regulator R [90]

Tr (gﬂaﬂ + ;aﬂgﬂ> R=0. (8.82)

Using the expressions for Ff“- = ih@,l\/ﬁ and F?W = 0 (in adapted coordinates)

and we can simplify [Eq. (8.81)|to

2
]\/}lm TrJe % — ]\}lm dW/ Z k2 e—iwteikm |:; (V,ufu) 61;[1{2:| eiwte—ikz,
—00 —00 T
(8.83)

and hence we don’t have to deal with any free derivatives due to the Jacobian.
Moving the plane wave past the regulator and rescaling k¥ — Mk and w — M?w

results in
R d2k: 1 R(Mk.M?w)
lim TrJeM? = lim M?* / / LEMy e w2 (8.84)
M—o0 M—o0
9 R(Mk,M?w) )
We now need to factor out e ¥ and e 2™ from e~ M2 using the BCH

expansion, as in the previous section, up to M4 terms. Since the1 regulator of
this subsection differs from that of the previous one only by d(h™%) terms, the
following factored expression is easily determined from [Eq. (8.63)]

R(ME,M2w) B B B B
e M2 — e—2mwe—k2 <1 + Ml + M22 T M33 + ]\444) ) (8.85)

Only the By term contributes to the anomaly, and we have the following expression
for the candidate anomaly

1 2
lim TrJew? = 3 (Viug") & —2me / @’k e ¥ By

Moo 2m (2r)2
2

(8.86)

where we have simplified the curvature squared expression by making use of
Eq. (8.71)|. The terms from which contribute to the anomaly must
satisfy the same criteria as in the case for the trace anomaly. Adopting the covari-
ant notation as in the case of the trace anomaly, the result for the diffeomorphism
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anomaly in this case is

Vh
Ane= g

1 2
%(Rwh’”f +omiy? 4+ %(wRWhW + RM“U”)> .

(8.87)

IEq. (8.87) and [Eq. (8.79)|now provide the following expression for the diffeomor-
phism anomaly

1
<VVTVM + JVV[MAV} — 2RVVMT”>

_v 1 m
M\ 720(47)2m 9672

We emphasize that all currents occurring on the left hand side of cor-
respond to the gravitational fields of the NC background. We note that most of
the previous results for the trace anomaly (based on DLCQ) indicate a one-to-one
correspondence of the 2 4+ 1 dimensional result of the NC background with 3 + 1
dimensional result of relativistic backgrounds. Were this to actually be true for
all gravitational anomalies, one would in fact naively expect there to be no diffeo-
morphism anomaly for the Schrodinger field in 2+ 1 dimensions. In deriving this
result, we have demonstrated that this is not the case. The presence of a diffeo-
morphism anomaly allows for several consequences in condensed matter systems
with boundaries. In particular we note that this could be relevant in providing
the entanglement entropy of Quantum Hall systems on curved backgrounds with
boundaries [75], where the Schrodinger field is present in the low energy effective
action.

3
(Ragh®)? + 150 4 ST (BRI + ) ) (859

8.5 A c-theorem condition

The coeflicients of the trace anomaly are closely related to the renormalization
group (RG) flow of a given theory. By applying the Wess-Zumino (WZ) consis-
tency condition on the quantum effective action one can determine the constraints
which relate the anomaly coefficients with the beta functions of the theory. Our
treatment in this section will follow [77] where the consistency conditions for 2d
and 4d relativistic CFTs are addressed. An investigation into the local RG flow
of fields along these lines on the NC background was initiated in [99]. Here we
will only consider the local RG flow of the R, 7#7" term of due to
marginal deformations. Our goal in this section will be to demonstrate that this
term provides a c-theorem condition analogous to that of 2d CFTs. To begin
with, let us consider the following renormalized partition function in the presence
of sources,

Z[J] =] = / DIDF*iS[*9".T] (8.89)

where W is the quantum effective action, which generates connected correlators
associated with renormalized composite operators, and J denotes all the sources.
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Here we will assume that J involves the independent background fields of the NC
backround (k" , 7" and A,) and dimensionless coefficients g' associated with cer-
tain marginal operator insertions Oy m To investigate RG flows we first introduce

the RG parameter u. We can now define the RG time function ¢ = In (%), where
oI
Lo is some arbitrary reference scale, and the beta functions g/ = dait correspond-

ing to the dimensionless parameters g’. The flow is generated by D = u% +p1oy,

where we have further defined 0y = 8%,. In flat spacetime W satisfies the flow
equation
DW =0 (8.90)

which is nothing but the Callan-Symanzik equation. The local RG concerns itself
with the renormalizability of composite operators on curved backgrounds and
hence the couplings are now functions of spacetime (¢! = g’(z,t)). The local
Callan-Symanzik equation under Weyl transformations is given by

(AK’ - Aﬁ) W = / dvB, (8.91)
v

where A is the local parameter involved in Weyl transformations, [dv is the

1%
integral involving the NC covariant volume element in (2 4+ 1) dimensions and
By is a local anomaly density involving derivatives of the NC fields and g’. The
variations AY and Ai are defined as
) 4]

2A H__
shiw T S

AY = [ dv [zAhW

)
B _ I
v

Eq. (8.91)|reveals that at the critical point, where 87 = 0, By is simply the trace
anomaly. Away from the critical point, we have additional dimension 4 terms

involving the derivatives ¢g/. We can thus write [Eq. (8.91)|in the following way

(AXV — Aﬁ) W = /dvT“T” [A (;Bq’RW - ;X,Ja#gfang> — (OuA) wl&,gl + e
1%

(8.93)
where %, x7; and w; all depend on the coupling parameter g/. The dots in
Eq. (8.93)| indicate the (Ru,,h“”)2 and other additional terms of dimension 4.
These terms have been ignored since they will not be required in the following
discussion. For simplicity we are also assuming that the NC background satisfies
the Frobenius condition. Since Weyl transformations are Abelian, they satisfy
the WZ consistency condition

AY AR AV - A lw=0 (8.94)

"In general J also involves m® associated with relevant operators @, and vector sources A, asso-
ciated with certain currents J* which the theory might possess
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Using [Eq. (8.93)| and [Eq. (8.94)| gives the following expression

[AXV — AR A - Aﬁ,} W = / dvr? (AN — NO,AN) 7"V, =0  (8.95)

Y
where
Vi =0,8% — (x1s8" — Bl ojwy — wi0;8") 0,97 (8.96)
Eq. (8.95)| vanishes if V,, vanishes. We see that [Eiq. (8.96) will vanish provided
058% = x1s8" — B 01wy —wrd; B (8.97)

We now define the new function 54) = 3% +w; B!, with which [Eq. (8.97) becomes

8J,§cb = X]J,@I + 5[ (ajw[ — a[(.UJ) (8.98)
Contracting this equation with 37 now leads to the following result
a~¢’
O = xut's’ (8.99)

This is a c-theorem condition satisfied by the coefficient of R, 7#7" on NC back-
grounds with the Frobenius condition, which is analogous to the relation satisfied
in 2d CFTs. At this point the proof of the c-theorem follows by establishing
that the ‘metric’ xs is positive definite. In 2d CFTs, it can be shown that yr;
is essentially equivalent to ‘Zamolodchikov’s metric’ Gry = (22)*([O;(2)] [0(0)]),
which further identifies 5* with Zamolodchikov’s c-function C [77]. Here the sit-
uation is not so straightforward since the marginal operators and the correlation
functions they define differ from those of 2d CFTs. Our analysis would be incom-
plete without considering all the correlation functions of the theory, which would
go outside the scope of the present work. We leave the investigation of this topic
and the consistency conditions following the general form of Bj to future work.

8.6 BCH expansion terms

It will be convenient to introduce the following definitions
I =T+ 2im (K9 A4; — 1)
G™ = 2K~ 19™RT
CY = AV
D' =9'n'i, DY = gn'
Y = ACY 4 2imD"I9C + (A + G"9) G'D7 + G1O,CY — 2Dy (hTEARY)
H'% = 9'C% + AD" + D"99,T" + 84(G™D,,”) + G™A,} — D, Jo"G
Qimn _ Dkijkan ,
AT = gipimn A = ;D™
BUM = _2@WMN 3 (AWM AT (8.100)
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where 8" = h*9; and C is as defined in [Eq. (8.54)} Then for
A = —kik;jhV

B ﬁk (B 20"~ &) + o (A —imC 4 WiAR—S 4 G')

1
a7
the BCH terms which describe E in can be expressed as

21 - 1 . g .
(A, B) = ——kikjkn D™ + — ik (¢ +20"%0,+ ')

92 y
(A, [4, B]] = Sz hikshnkn©7™

4 9 y )
(B [A, B]] = = shikshnkn A — ﬁgkk]km (melal + Hl”)

1 . L L
+ —rakik; (E” + BImnY, 9, + 2H ),
[A7 [A7 [Aa BH] =0, [Av [Aa [A’ [A7 B]H] =0, [Ba [Av [Aa [Aa BHH =0
[A,[B,[A, B]]] = —%kikjkmknleijmpaph”l
1 . .
o+ —hikykmbn (2HY D™ + BIP(A4,"" + 2D,) )
(BB, A, B]| = < kikskmkn [(BJ PD," — 20! A" — grBY l) a)
g 1 ~ 87 L
—0"H™ — AA™ — 2melalr"] + 5z Rk om b 1O A
) g
[A,[A,[B,[A, B]]|] = Wk:ikjkmknklkkB”qupm”Dqlk
[A,[B, B, [A,B]]] = %kikjkmknkpkq (Bijm”Dr"l — 29! Ammid a"Bijml) D
1 3
[B,[B,[B,|A, B]j]] = ﬁikikjkmknkpkqapaumw

[B,[A, B, [A,B]]]] = —%kikzjkmknkzpkq@p (BY4rD,™™) (8.101)

The free derivatives contained in the BCH terms above, and thereby in F, are

needed in computing E?, E3 ad E* in|Eq. (8.61)l With all expansions taken into

consideration, we can drop the free derivative terms to arrive at |[Eq. (8.62)l Only
the terms By and By lead to non-trivial results following symmetric integration.

By using 9,k = —QFSkhj)k ;a0 = (0,4), the terms contained in By are, order by
order, given by

k0. —imC
1 oy o~
2. _ Tl ) T — TV
K2 kak](C + T - 20T
1 . . ~ .
Kt Skikijkmbn (O + 249" — kikjkm kL DI

1 .
kS —§kikjk:mknklkle”ka". (8.102)
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Using these terms in results in the expression of The terms

involved in B4 are considerably more involved and comprise the following
1
KO : —3 (m2C2 + imAC)
) , o 1 . L
K2 : kik; {zm <3 (D“J@lc + alafc) +5C (C” + rzrﬂ) - al(rﬂ@)

1 ol o~ 1 . L~
—ZACY — ZTVATY + = (AOTY + ' ALY
62 73 +3< T+ 0 )]

k' kikjkkn [im <c (fiD“’m — % (@9mm 4 2Aijm")> — DJ'WW‘C)

1 .. . . 1~. . ) 1 . ~ .

+ 5 (OO L OAD) - ST (@O ADT) — SO (DMLY

+ 2pipimng i 1 L (@ 4 gty 4 ¢ (Lomn g Lfmgn _ Lgmgn
3 6 8 4 2

= %D,iﬂ' (apimn 4 DI - aglcmm) + 2—14 (BT - Bl a, ™)

- %Bijmlaﬁ” = %DmijAf” - %D“jal (om1™)

1 iTj myn 2 mninitn  Laiajammn | L=iTjamn
+5 (0T (97T7) 4 SO T — So'om T — ST TonT
1 g 1 g g
kS kikjkmknkiky, | simC DY DM — — (9MC% 4 ADMT) phmn
¢ 2 3
- écz] (@mnlk + 9 Alkmn _ 3lek:mn> - éalak (@Z]mn + 151A13mn>
+ (@zjmn + 2Aijmn) (;alfk _ éflfk) _ lemijanfk + éflfkmem]
. 1~ 2 ~ 1

+ Drz]ar <2Plaermn + ngmnaTFl _ 6ar(@lkmn + Alkmn))

+ % <flak(@mmn + Az]mn) . 8Z(DrijaTkan) + 2szgalakfn)

+ %Drmn (Bijrstlk . Bijlrfk - 267’Alkzij> + % (Bijmraanlk

7 g
+6al(BZJkTDrmn)>:|
1 g g g

KB ¢ ikl B oKl {18 (@1mnethv 4 g atimn glkva . ggiimn gtk

+ % (Ciijmanlk + DpijDrmnaqulk) + %8;0 (@l]mn + Aijmn) Dqlk

+ <ifzfj . ;azfj> meanlk _ % (Gmmn + 2A2]mn) prqlk o 112Bijm7“Drnle’pq:|
10 . 71..1.. 1 Tr nsij ppmn nalk ymn igmn rpq Tyslk

K< kakjhom ko kukkpkoky ks | < (T7D™ DP™ D (@m™ 4 244™™) D™PID

1 y
k2 ﬂk:l-k:jkmknklkkkpqurkskuka”]Dsm”D“lkD”pq (8.103)



Chapter 9

Conclusions

In this thesis, we considered the coupling of non-relativistic field theories to
curved backgrounds and their applications. We considered this in two parts. In
the first part of the thesis, the curved background and the coupling of fields
to them were determined through the localisation of the non-relativistic space-
time symmetries in flat space. This required a particular modification of the
usual Poincaré gauge theory which we described as the Galilean Gauge theory
(GGT). This was demonstrated to have a broad range of applicability through
the localisation of the Galilean symmetries of both scalar and vector field theory
models, as well as through the further inclusion of the anisotropic scale symmetry.
The resulting general background were identified with a class of Newton-Cartan
(NC) backgrounds through specific definitions of the vierbeins. In particular, the
fields resulting from localising the Galilean symmetry led to the NC background,
while the additional inclusion of dilations provided the scale covariant NC back-
ground. Apart from the modified coupling which fields have to these backgrounds,
the backgrounds themselves were shown to have a particular degenerate metric
structure with key differences from the ADM formulation of General Relativis-
tic backgrounds. As a result, we expected that the dynamics of fields coupled
to them would also have interesting characteristics. This was considered in the
second part of the thesis. We first considered the formulation of fluids on the
NC and scale covariant NC backgrounds, where we introduced a Weyl covariant
formalism for the latter. We had also considered the effective field theory of a
Hall droplet and demonstrated that the scale covariant background leads to an
additional response function related to the expansion of the fluid. We had finally
considered the trace and diffeomorphism anomalies of the Schrédinger field on the
NC background. The modified structure of these anomalies are expected to play
a role in the description of quantum fields and fluids on the NC background, as
well as providing new features with regards to their RG flow. This is evident from
the fact that the trace anomaly of the scalar field on the NC background in 2+ 1
dimensions contains terms which satisfy both the a-theorem and the c-theorem.

In[Chapter 2| a detailed discussion on the different approaches to Poincaré gauge
theory was provided. The Lie algebraic, field theoretic approaches and the connec-
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tion between these was been highlighted to better understand the Galilean Gauge
theory (GGT) formulated in the following chapter. The field theoretic approach
was demonstrated through the example of the complex Klein-Gordon field. The
geometrical interpretation of the local Poincaré invariant action was discussed. In
we proposed a method of localising the global Galilean transformation
of a general field theoretic model in order to construct spatial diffeomorphism
invariant field theories. The localisation procedure in non-relativistic field the-
ories required the separation of time and space. Local coordinate systems were
considered to give local Galilean transformations a geometric interpretation. To
restore the local invariance we first defined covariant derivatives with respect to
the global coordinates and then transformed them to covariant derivatives with
respect to the local coordinates. New fields were introduced in the process so that
the local covariant derivatives transformed under local Galilean transformation
as the ordinary derivatives did under global Galilean transformations. The local-
isation of the transformations also implied a change in the measure of integration
for the matter action. We have shown that the measure can be determined appro-
priately by some functions of the fields introduced via localization. Substituting
the local covariant derivatives and the measure, we obtained an action invariant
under local Galilean transformations. The new fields along with their transforma-
tions were found to be useful in phenomenological model building in theoretical
condensed matter physics such as in the theory of FQHE.

In we considered a generic theory containing a free and interacting
Schrodinger field with a gauge field. Imposing a constant time slice (by setting
the time translation parameter to zero) the localisation procedure was shown
to lead to a spatial diffeomorphism invariant action on general non-relativistic
curved backgrounds. We also considered a model of an electron moving in two
dimensional space whose dynamics was dictated by the Chern-Simons (CS) term.
Contrary to certain results in the literature [55], the formulation of the action
on curved backgrounds was shown to involve no problems up to certain bound-
ary terms. The fields introduced through localisation admitted a geometric in-
terpretation. In terms of these fields we constructed the Newton-Cartan (NC)
background in We demonstrated all basic properties of NC geome-
try, particularly those in relation to the dynamical description of matter fields
coupled to it are satisfied following our construction. In it was fur-
ther demonstrated that the localisation procedure could be used to involve addi-
tional non-relativistic symmetries, such as anisotropic scale invariance. Inclusion
of anisotropic scale symmetry introduced additional terms which modified the
metricity conditions, the connection and the definition of the Riemann tensor of
the scale covariant NC background in These results motivated us to
further investigate the dynamics of fields and fluids on these curved backgrounds.

In|[Chapter 7] we first recalled the formulation of fluids on the NC background, as
well as the corresponding currents and constitutive relations for the case of ideal
fluids. We then extended this formalism to account for fluids on the scale covariant
NC background. We constructed a manifestly Weyl covariant framework within



97

which such fluids may easily be investigated. This framework, along with the
properties of the scale covariant Riemann tensor and Weyl tensor in
would provide the tools necessary to investigate non-relativistic fluids to higher
orders in the derivative expansion. As an example, we considered the effective
theory for a Quantum Hall fluid, described by the Landau-Ginzburg action. In
particular we demonstrated that the effective action involved scale dependent
terms in addition to the usual Berry phase and Wen-Zee terms. This additional
term was shown to provide a response corresponding to the expansion of the fluid
under deformations of the spatial metric. As explained, this provides only part
of a much richer set of responses admitted by the scale covariant geometry. The
analysis was entirely in the context of classical variations of the effective action.
The presence of new response functions demonstrates that the one-loop results in
the full quantum theory will be considerably more interesting.

To investigate quantum effects due to the NC background, particularly in
relation to one-loop effects, we finally considered the trace and diffeomorphism
anomalies of the Schrodinger field minimally coupled to the 2 + 1 dimensional
NC background in This was performed within the Fujikawa approach,
where all variations of the background fields were considered. The trace anomaly
was shown to involve two pieces, with the form of the 3 + 1 dimensional and the
141 dimensional relativistic anomaly respectively. The diffeomorphism and trace
anomalies further share a relation analogous to that of the 141 dimensional scalar
field. The presence of U(1) violating terms in the final result indicate the need to
determine the U(1) gravitational anomaly. This would characterize the structure
of non-relativistic anomalies, which as it already stands, is in sharp distinction
with those of relativistic results. Unlike the relativistic case, the anomalies only
arise in odd dimensions. The presence of anomaly terms which go like the rela-
tivistic results will also lead to interesting consequences. For the 341 dimensional
term, it was already demonstrated that part of it satisfies an a-theorem. In this
thesis, we demonstrated that a part of the 1 4+ 1 dimensional term satisfies a
c-theorem.

The full treatment of local RG flows under marginal and non-marginal de-
formations and their relations with the correlation functions of the Schrédinger
fields will be an important avenue to investigate in the future. This in particu-
lar might allow us to better understand the field A, of the NC background, its
emergence in non-relativistic systems and its effect on the RG flow of correlators
of the theory. This will be important in determining the critical points of con-
densed matter systems. One can also construct the effective gravitational action
for the NC background using the trace anomaly result. In the relativistic case,
the 14 1 result can be integrated exactly. A similar property should hold for the
NC trace anomaly in 2 4+ 1 dimensions. Such a construction would result in the
NC Liouville gravitational effective action. A long standing problem of the NC
background has involved the construction of gravitational actions. Working with

the result of the trace anomaly might allow us to better understand the dynamics
of the NC background.
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